
Net-Centric Implementation Framework

Part 1: Overview

Part 2: Traceability

Part 3: Migration Guidance

Part 4: Node Guidance

Part 5: Developer Guidance

Part 6: Contracting Guidance for
Acquisition

V 2.2.0
17 June 2008

Net-Centric Enterprise Solutions for Interoperability (NESI) is
a collaborative activity of the USN Program Executive Office
for Command, Control, Communications, Computers and
Intelligence (PEO C4I); the USAF Electronic Systems Center
(ESC); and the Defense Information Systems Agency (DISA).

Approved for public release; distribution is unlimited.

NESI-X Subdocument generated using: View, NESI Part 2: Traceability
Generated: Mon Jun 23 11:54:34 PDT 2008
NESI-X Version: v1.1.9 build 3309 - 2008/05/16 08:17

Table of Contents

Perspectives .. 4

NESI Executive Summary .. 5

Part 2: Traceability ... 7

ASD(NII): Net-Centric Guidance ... 8

Data .. 9

Design Tenet: Make Data Visible ... 10

Design Tenet: Make Data Accessible ... 11

Design Tenet: Make Data Understandable ... 13

Design Tenet: Make Data Trustable ... 15

Design Tenet: Make Data Interoperable ... 16

Design Tenet: Provide Data Management ... 18

Design Tenet: Be Responsive to User Needs .. 20

Services .. 22

Design Tenet: Service-Oriented Architecture (SOA) .. 23

Design Tenet: Open Architecture ... 31

Design Tenet: Scalability .. 37

Design Tenet: Availability ... 39

Design Tenet: Accommodate Heterogeneity .. 40

Design Tenet: Decentralized Operations and Management ... 44

Design Tenet: Enterprise Service Management ... 45

Information Assurance/Security ... 46

Design Tenet: Net-Centric IA Posture and Continuity of Operations 47

Design Tenet: Identity Management, Authentication, and Privileges 48

Design Tenet: Mediate Security Assertions .. 52

Design Tenet: Cross-Security-Domains Exchange ... 53

Design Tenet: Encryption and HAIPE .. 54

Design Tenet: Employment of Wireless Technologies ... 56

Other Design Tenets ... 57

Transport .. 60

Design Tenet: IPv6 ... 61

Design Tenet: Packet Switched Infrastructure .. 63

Design Tenet: Layering and Modularity .. 65

Design Tenet: Transport Goal .. 67

Design Tenet: Network Connectivity ... 69

Design Tenet: Concurrent Transport of Information Flows ... 71

Design Tenet: Differentiated Management of Quality-of-Service .. 73

Design Tenet: Inter-Network Connectivity .. 75

Design Tenet: Joint Technical Architecture [now DISR] ... 76

Design Tenet: RF Acquisition ... 77

Design Tenet: Joint Net-Centric Capabilities .. 78

Design Tenet: Operations and Management of Transport and Services 80

Open Technology Development .. 83

Open Architecture .. 84

Open Standards ... 86

Open Development Collaboration .. 87

Open Source (Software) .. 88

Open Systems .. 89

Naval Open Architecture ... 90

Interoperability .. 91

Maintainability ... 98

Extensibility ... 104

Composeability ... 105

Reusability .. 107

Relationship with the JCIDS Process ... 110

Guidance and Best Practice Details .. 112

Glossary ... 523

References .. 572

Perspectives

Part 2: Traceability

Page 5

P1117: NESI Executive Summary

Net-Centric Enterprise Solutions for Interoperability (NESI) provides, for all phases of the acquisition of net-centric
solutions, actionable guidance that meets DoD Network-Centric Warfare goals. The guidance in NESI is derived from
the higher level, more abstract concepts provided in various directives, policies and mandates such as the Net-Centric
Operations and Warfare Reference Model (NCOW RM) [R1176] and the ASD(NII) Net-Centric Checklist [R1177] . As
currently structured, NESI implementation covers architecture, design and implementation; compliance checklists; and a
collaboration environment that includes a repository.

More specifically, NESI is a body of architectural and engineering knowledge that guides the design, implementation,
maintenance, evolution, and use of the Information Technology (IT) portion of net-centric solutions for military application.
NESI provides specific technical recommendations that a DoD organization can use as references. Stated another way,
NESI serves as a reference set of compliant instantiations of these directives.

NESI is derived from a studied examination of enterprise-level needs and, more importantly, from the collective practical
experience of recent and on-going program-level implementations. It is based on today's technologies and probable near-
term technology developments. It describes the practical experience of system developers within the context of a minimal
top-down technical framework. Most, if not all, of the guidance in NESI is in line with commercial best practices in the area
of enterprise computing.

NESI applies to all phases of the acquisition process as defined in DoD Directive 5000.1 [R1164] and DoD Instruction
5000.2 [R1165] and to both new and legacy programs. NESI provides explicit counsel for building in net-centricity from the
ground up and for migrating legacy systems to greater degrees of net-centricity.

NESI subsumes a number of references and directives; in particular, the Air Force C2 Enterprise Technical Reference
Architecture (C2ERA) and the Navy Reusable Applications Integration and Development Standards (RAPIDS). Initial
authority for NESI is per the Memorandum of Agreement between Commander, Space and Naval Warfare Systems
Command (SPAWAR); Navy Program Executive Officer, C4I & Space (now PEO C4I); and the United States Air Force
Electronic Systems Center (ESC), dated 22 December 2003, Subject: Cooperation Agreement for Net-Centric Solutions
for Interoperability (NESI). The Defense Information Systems Agency (DISA) formally joined the NESI effort in 2006.

Content Structure

Perspectives NESI Perspectives describe a topic and
encompass related, more specific Perspectives
or encapsulate a set of Guidance and Best
Practice details, Examples, References, and
Glossary entries that pertain to the topic.

Guidance NESI Guidance is in the form of
atomic, succinct, absolute and definitive
Statements related to one or more Perspectives.
Each Guidance Statement is linked to
Guidance Details which provide Rationale,
relationships with other Guidance or Best
Practices, and Evaluation Criteria with one
or more Tests, Procedures and Examples
which facilitate validation of using the
Guidance through observation, measurement
or other means. Guidance Statements are
intended to be binding in nature, especially if
used as part of a Statement of Work (SOW) or
performance specification.

Best Practices NESI Best Practices are advisory in nature
to assist program or project managers and
personnel. Best Practice Details can have all
the same parts as NESI Guidance. The use of

Part 2: Traceability

Page 6

NESI Best Practices are at the discretion of the
program or project manager.

Examples NESI Examples illustrate key aspects of
Perspectives, Guidance, or Best Practices.

Glossary NESI Glossary entries provide terms,
acronyms, and definitions used in The context
of NESI Perspectives, Guidance and Best
Practices.

References NESI References identify directives,
instructions, books, Web sites, and other
sources of information useful for planning or
execution.

Releasability Statement

NESI Net-Centric Implementation v2.2 has been cleared for public release by competent authority in accordance
with DoD Directive 5230.9 [R1232] and is granted Distribution Statement A: Approved for public release;
distribution is unlimited. Obtain electronic copies of this document at http://nesipublic.spawar.navy.mil.

Vendor Neutrality

The NESI documentation sometimes refers to specific vendors and their products in the context of examples and
lists. However, NESI is vendor-neutral. Mentioning a vendor or product is not intended as an endorsement, nor is a
lack of mention intended as a lack of endorsement. Code examples typically use open-source products since NESI
is built on the open-source philosophy. NESI accepts inputs from multiple sources so the examples tend to reflect
whatever tools the contributor was using or knew best. However, the products described are not necessarily the
best choice for every circumstance. Users are encouraged to analyze specific project requirements and choose
tools accordingly. There is no need to obtain, or ask contractors to obtain, the tools that appear as examples in this
guide. Similarly, any lists of products or vendors are intended only as references or starting points, and not as a list
of recommended or mandated options.

Disclaimer

Every effort has been made to make NESI documentation as complete and accurate as possible. Even with
frequent updates, this documentation may not always immediately reflect the latest technology or guidance. Also,
references and links to external material are as accurate as possible; however, they are subject to change or may
have additional access requirements such as Public Key Infrastructure (PKI) certificates, Common Access Card
(CAC) for user identification, and user account registration.

Contributions and Comments

NESI is an open project that involves the entire development community. Anyone is welcome to contribute
comments, corrections, or relevant knowledge to the guides via the Change Request tab on the NESI Public site,
http://nesipublic.spawar.navy.mil, or via the following email address: nesi@spawar.navy.mil.

http://nesipublic.spawar.navy.mil

Part 2: Traceability

Page 7

P1288: Part 2: Traceability

Part 2: Traceability provides a mapping of specific NESI Guidance to other, often more general, high-level DoD net-
centric and interoperability efforts such as the Assistant Secretary of Defense for Networks and Information Integration/
Department of Defense Chief Information Officer, or ASD(NII)/DoD CIO, Net-Centric Checklist. [R1177] Part 2 includes
Perspectives that follow the structure of each high-level effort and provide a NESI interpretation of the implementation
implications for program managers and developers which these other efforts direct or imply. These Perspectives, and the
associated NESI Guidance and Best Practice links, provide a means of navigating NESI content based on the traceability
Part 2 provides. The efforts to which Part 2 content traces may be DoD- or Service-specific; Part 2 currently traces to the
following.

Detailed Perspectives

ASD(NII) Net-Centric Guidance

Open Technology Development

Naval Open Architecture

Relationship with the JCIDS Process

Part 2: Traceability

Page 8

Part 2: Traceability > ASD(NII): Net-Centric Guidance

P1239: ASD(NII): Net-Centric Guidance

The ASD(NII) Checklist Guidance is primarily for managers of new programs or programs that are undergoing a
transformation or major upgrade and is especially useful in the pre-systems acquisition and systems acquisition
phases. The ASD(NII) Net-Centric Checklist [R1177] uses net-centric design precepts called tenets to guide the move into
the net-centric environment. The design tenets help the DoD leadership understand how net-centricity is evolving. NESI
provides specific technical direction for satisfying the Net-Centric Checklist. Note that some tenets address doctrinal or
procedural requirements; NESI guidance does not address those areas.

Intended Audience

The Net-Centric Guidance is primarily applicable for new programs or programs that are undergoing a
transformation or major upgrade, especially in the pre-systems acquisition and systems acquisition phases. The
intended audience for this document includes the following:

• Program managers

• Deputy program managers

• Contracting officers

• Chief engineers

• Contractor personnel

• Enterprise and software architects

Detailed Perspectives

The following perspectives address the ASD(NII) Net-Centric Checklist design tenet categories.

Data

Services

Information Assurance/Security

Transport

Each design tenet provides specific technical guidance to enable the system to satisfy its net-centric requirements.

The technical guidance in Part 2 is not necessarily all encompassing; rather, use these guidance statements as part of
the overall system engineering analysis of a program to facilitate the evolution of a program or project to net-centricity.
Additionally, not all design tenets can be satisfied strictly by technical guidance. All elements of Doctrine, Organization,
Training, Materiel, Leadership, Personnel, and Facilities (DOTMLPF) must participate in the evolution of net-centricity.

Part 2: Traceability

Page 9

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Data

P1244: Data

The DoD Net-Centric Data Strategy [R1172] is a key enabler of DoD transformation. Significant attributes of the data
strategy include the following:

• Ensuring that data are understandable and trustable, and that they are visible and accessible when and where
needed to accelerate decision-making.

• "Tagging" data (intelligence, non-intelligence, raw, and processed) with metadata that supports discovery by both
known and unanticipated users in the enterprise.

• Posting data to shared spaces that all users can access, except when limited by security, policy, or regulations.

• Posting in parallel with processing; Task/Post/Process/Use replaces the Task/Process/Exploit/Disseminate
paradigm.

• Separating data from applications so that users may choose different applications to exploit the same data.

• Handling information only once to eliminate duplicate, non-authoritative data.

Note: This section explains the design tenets surrounding data and data assets. A data asset is any entity that
involves data. For example, a database is a data asset composed of data records.

Detailed Perspectives

Design Tenet: Make Data Visible
Design Tenet: Make Data Accessible
Design Tenet: Make Data Understandable
Design Tenet: Make Data Trustable
Design Tenet: Make Data Interoperable
Design Tenet: Provide Data Management
Design Tenet: Be Responsive to User Needs

Part 2: Traceability

Page 10

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Data > Design Tenet: Make Data Visible

P1250: Design Tenet: Make Data Visible

Data visibility requires an integrated environment of metadata models about the data assets. A data asset is visible
when discovery metadata that describes the asset is accessible. Perform forward and/or reverse engineering to capture
metadata that describes the data assets of a node. Making data visible (even if not accessible) helps develop information
about the node and its applications through insights such as the following:

• Essential missions that define the reason for the enterprise; the ultimate goals and objectives that measure
enterprise accomplishment

• Procedures performed by various groups in the enterprise that achieve these essential missions

• The specific databases, information systems, and processes that groups use to accomplish aspects of the essential
missions

• Context-independent semantic templates of data elements and mechanisms for configuring into data models, as
determined by subject matter experts

• Mechanisms for configuring data models into databases used by organizations in the enterprise

Considerations

• Make all data assets visible, even if they are not accessible.

• Use the DoD Discovery Metadata Specification (DDMS) [R1225] and all of its attributes to describe data
assets.

• If possible, generate discovery metadata automatically.

Guidance

• G1383: Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

• G1385: Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

• G1391: Identify taxonomy additions or changes in conjunction with the Communities of Interest (COIs) during
the Program development for potential inclusion in the Taxonomy Gallery of the DoD Metadata Registry.

• G1387: Identify data elements created during Program development for registering in the Data Element Gallery
of the DoD MetaData Registry.

• G1389: Publish database tables which are of common interest by registering them in the Reference Data Set
Gallery of the DoD Metadata Registry.

• G1125: Use the Department of Defense Metadata Specification (DDMS) for standardized tags and taxonomies.

Best Practices

• BP1392: Register services in accordance with a documented service registration plan.

• BP1863: Make shareable data assets visible, even if they are not accessible.

• BP1865: Provide sufficient program, project, or initiative metadata descriptions and automated support to enable
mediation and translation of the data between interfaces.

Part 2: Traceability

Page 11

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Data > Design Tenet: Make Data Accessible

P1252: Design Tenet: Make Data Accessible

Data accessibility requires defining data assets that exist within acceptable boundaries of security, along with the
information necessary to access them. Relational databases automatically contain metadata about data assets. This
perspective extends that definition to XML data that may exist independently or that are mapped to and/or from relational
data. The following considerations focus on using XML; however, there are alternatives (see the final two Considerations).

Considerations

XML Requirement

• Use XML to exchange information across systems. Define and implement an XML version of each external
interface in all systems. If a system makes data available to external partners, make that data available in
the form of an XML document. This is required even if none of the current known partners want or send XML
data. Systems may implement other external data exchange mechanisms if an XML interface is supported.
Systems may implement other external data exchange mechanisms in addition to an XML interface.

XML Interface Specification

• The system that defines an XML interface will do the following:

• Specify the syntax of the XML documents it accepts and produces

• Use the XML Schema standard to express these specifications. Refer to XML Schema Best Practices
[R1226] for guidance on creating XML schemas

• Enter the schema in the DoD Metadata Registry and Clearinghouse. [R1227] This should occur as
early as possible in the development process. Consult designated DoD XML Namespace Managers for
guidance in choosing element, attribute, and type identifiers

• An XML interface is responsible for the following actions:

• Accept input data, producing output data, or both

• Encode this data in XML documents

• Specify the schema of the XML documents it accepts and produces

• Provide documentation that allows programmers and users to understand the meaning of those
documents

• Be implemented by a runtime service that accepts and produces such documents

XML Interface Useage

• A system that uses an XML interface defined by some other system shall record this fact in the DoD
Metadata Registry and Clearinghouse.

XML Transport

• Systems must implement one version of each XML interface that is accessible through a URL using HTTP/
HTTPS. Systems may implement other versions of the interface using other transport mechanisms, such as
FTP or SMTP, as long as they also support the HTTP version.

Open-Standard Alternatives to XML Format

Part 2: Traceability

Page 12

• Information that is customarily exchanged using a well-known open-standard format does not have to be
made available in XML. For example, systems may transfer image data in JPEG format, and email messages
may continue to use RFC 822 (Standards for ARPA Internet Text Messages) headers. It is not necessary
to develop an equivalent XML interface for these. Make a list of the exception formats available. It is not
necessary to convert information intended for presentation that is currently held in Standard Generalized
Markup Language (SGML) format immediately into XML. However, systems should consider future migration
from SGML to XML.

Proprietary Alternatives to XML Format

• Information that can only be expressed using closed proprietary formats does not have to be made available
in XML. For example, systems may continue to exchange word processor files in Microsoft® Word (DOC
format); it is not necessary to develop an equivalent XML interface for this information.

Guidance

• G1383: Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

• G1385: Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

• G1763: Indicate the security classification for all classified data.

• G1387: Identify data elements created during Program development for registering in the Data Element Gallery
of the DoD MetaData Registry.

• G1389: Publish database tables which are of common interest by registering them in the Reference Data Set
Gallery of the DoD Metadata Registry.

• G1390: Standardize on the terminology published by relevant Communities of Interest (COIs) listed in the
Taxonomy Gallery of the DoD Metadata Registry.

• G1391: Identify taxonomy additions or changes in conjunction with the Communities of Interest (COIs) during
the Program development for potential inclusion in the Taxonomy Gallery of the DoD Metadata Registry.

Best Practices

• BP1392: Register services in accordance with a documented service registration plan.

• BP1874: Develop methods to forward IP datagrams from external networks.

http://www.w3.org/Protocols/rfc822

Part 2: Traceability

Page 13

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Data > Design Tenet: Make Data Understandable

P1253: Design Tenet: Make Data Understandable

Use well-defined standard data elements to establish the semantic basis for data models. To enable data understanding,
start with well-defined data ontologies, taxonomies, and vocabularies using standard data elements as the basis for
data model structure templates used throughout database models and operating databases. The use of standard data
elements also extends to the semantics of XML schemas that may exist independently or that are generated from
database data models.

Considerations

XML Schema Usage

• Search the DoD Metadata Registry for existing XML schemas suitable for reuse in system interfaces.
Record the reuse of XML schemas in the DoD Metadata Registry and Clearinghouse.

• If an existing XML schema is close to but not exactly what was specified, review the system requirements
with relevant Communities of Interest (COIs) to determine if the existing schema can be applied as-is or
with minor modification.

• Review proposed XML definitions with the designated DoD XML Namespace Manager for relevant COIs.

• Define XML schemas only for that information for which the system is an authoritative source.

• Review XML definitions produced by government and industry consortia for possible reuse.

• Define XML interfaces in collaboration with known information exchange partners.

XML Schema Documentation

• Document the semantics of XML interfaces as annotations on the XML schema.

• Supply a text definition for every element, attribute, and enumeration value defined in the schema. Refer to
the XML Schema specification [R1229] for more information on schema annotations.

• Describe the metadata for each XML element with information from related view, physical, logical,
conceptual, and data element models.

Guidance

• G1382: Be associated with one or more Communities of Interest (COIs).

• G1383: Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

• G1384: Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.

• G1386: Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata
Registry, using those in the relational database technology which can be reused in the Program.

• G1388: Use predefined commonly used database tables in the DoD Metadata Registry.

• G1389: Publish database tables which are of common interest by registering them in the Reference Data Set
Gallery of the DoD Metadata Registry.

• G1390: Standardize on the terminology published by relevant Communities of Interest (COIs) listed in the
Taxonomy Gallery of the DoD Metadata Registry.

Part 2: Traceability

Page 14

• G1391: Identify taxonomy additions or changes in conjunction with the Communities of Interest (COIs) during
the Program development for potential inclusion in the Taxonomy Gallery of the DoD Metadata Registry.

• G1724: Develop XML documents to be well formed.

• G1725: Develop XML documents to be valid XML.

• G1726: Define XML Schemas using XML Schema Definition (XSD).

• G1727: Provide names for XML type definitions.

• G1728: Define types for all XML elements.

• G1729: Annotate XML type definitions.

• G1737: Define a target namespace in schemas.

• G1738: Define a qualified namespace for the target namespace.

• G1753: Declare the XML schema version with an XML attribute in the root XML element of the schema
definition.

• G1759: Use a style guide when developing Web portlets.

• G1761: Provide units of measurements when displaying data.

• G1762: Indicate all simulated data as simulated.

• G1763: Indicate the security classification for all classified data.

• G1770: Explicitly define the Data Distribution Service (DDS) Domains for the system.

• G1796: Explicitly define all the Data Distribution Service (DDS) Domain Topics.

• G1798: Explicitly define all the Data Distribution Service (DDS) Domain data types.

• G1799: Explicitly associate data types to the Data Distribution Service (DDS) Topics within a DDS Domain

• G1800: Explicitly identify Keys within the Data Distribution Service (DDS) data type that uniquely identify an
instance of a data object.

• G1810: Use data models to document the data contained within the Data Distribution Service (DDS) Data-
Centric Publish Subscribe (DCPS).

Best Practices

• BP1392: Register services in accordance with a documented service registration plan.

Part 2: Traceability

Page 15

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Data > Design Tenet: Make Data Trustable

P1254: Design Tenet: Make Data Trustable

A key to supporting data trust relationships is to ensure that data is unchanged (or otherwise reconcilable) when the data
is accessed from all points within the trust relationship. Formalize and enforce authoritative data sources and ensure that
the data is current and distributed in a timely manner.

Considerations

• Use the Resource Descriptors and Security Descriptors specified by the DoD Metadata Registry to provide
data validity and security information.

• Identify the authoritative source and purpose for each data element.

• Aggregated data can often exceed the security level of the individual data elements. Recognize and account
for the possibility of an increased security level when aggregating data.

Guidance

• G1154: Use stored procedures for operations that are focused on the insertion and maintenance of data.

• G1155: Use triggers to enforce referential or data integrity, not to perform complex business logic.

• G1383: Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

• G1385: Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

• G1387: Identify data elements created during Program development for registering in the Data Element Gallery
of the DoD MetaData Registry.

• G1388: Use predefined commonly used database tables in the DoD Metadata Registry.

• G1389: Publish database tables which are of common interest by registering them in the Reference Data Set
Gallery of the DoD Metadata Registry.

• G1762: Indicate all simulated data as simulated.

• G1763: Indicate the security classification for all classified data.

Part 2: Traceability

Page 16

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Data > Design Tenet: Make Data Interoperable

P1256: Design Tenet: Make Data Interoperable

To be interoperable, data must have known structural and discovery metadata as well as mechanisms to support its
translation (e.g., to different units). Analyze and register metadata data assets such as names, data types, lengths,
precision, scale, and restricted value domains. Identify the standards used to represent these items. Work with
Communities of Interest to ensure the data represents appropriate semantics.

Considerations

XML Wrapped Data

• If XML wapped data are intended for exchange, configure them in terms of standard transactions with
headers, trailers, and bodies.

XML Schema Validation

• Systems that produce XML documents shall guarantee that the XML documents are valid according to the
XML schema they have published in the DoD Metadata Registry and Clearinghouse. Systems that receive
XML documents should validate them against the schemas published by the Source system.

Guidance

• G1382: Be associated with one or more Communities of Interest (COIs).

• G1383: Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

• G1384: Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.

• G1386: Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata
Registry, using those in the relational database technology which can be reused in the Program.

• G1388: Use predefined commonly used database tables in the DoD Metadata Registry.

• G1389: Publish database tables which are of common interest by registering them in the Reference Data Set
Gallery of the DoD Metadata Registry.

• G1390: Standardize on the terminology published by relevant Communities of Interest (COIs) listed in the
Taxonomy Gallery of the DoD Metadata Registry.

• G1391: Identify taxonomy additions or changes in conjunction with the Communities of Interest (COIs) during
the Program development for potential inclusion in the Taxonomy Gallery of the DoD Metadata Registry.

• G1724: Develop XML documents to be well formed.

• G1725: Develop XML documents to be valid XML.

• G1726: Define XML Schemas using XML Schema Definition (XSD).

• G1729: Annotate XML type definitions.

• G1737: Define a target namespace in schemas.

• G1738: Define a qualified namespace for the target namespace.

• G1746: Develop XSLT stylesheets that are XSLT version agnostic.

Part 2: Traceability

Page 17

• G1753: Declare the XML schema version with an XML attribute in the root XML element of the schema
definition.

• G1754: Give each new XML schema version a unique URL.

• G1759: Use a style guide when developing Web portlets.

• G1761: Provide units of measurements when displaying data.

• G1763: Indicate the security classification for all classified data.

• G1770: Explicitly define the Data Distribution Service (DDS) Domains for the system.

• G1772: Assign a unique identifier for each Data-Distribution Service (DDS) Domain within the system.

• G1798: Explicitly define all the Data Distribution Service (DDS) Domain data types.

• G1799: Explicitly associate data types to the Data Distribution Service (DDS) Topics within a DDS Domain

• G1800: Explicitly identify Keys within the Data Distribution Service (DDS) data type that uniquely identify an
instance of a data object.

• G1810: Use data models to document the data contained within the Data Distribution Service (DDS) Data-
Centric Publish Subscribe (DCPS).

• G1796: Explicitly define all the Data Distribution Service (DDS) Domain Topics.

• G1001: Use formal standards to define public interfaces.

• G1385: Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

Best Practices

• BP1392: Register services in accordance with a documented service registration plan.

• BP1865: Provide sufficient program, project, or initiative metadata descriptions and automated support to enable
mediation and translation of the data between interfaces.

• BP1866: Coordinate with end users to develop interoperable materiel in support of high-value mission capability.

Part 2: Traceability

Page 18

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Data > Design Tenet: Provide Data Management

P1257: Design Tenet: Provide Data Management

Enhance the ability to support data management by providing a process to define, develop, and maintain an ontology
(e.g., schemas, thesauruses, vocabularies, keyword lists, and taxonomies).

Considerations

• Obtain metrics to promote awareness of data management successes and areas requiring improvement.

• Provide a graphical representation, outline, or model representing the format, structure, and relationship of
data.

Guidance

• G1383: Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

• G1384: Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.

• G1385: Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

• G1386: Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata
Registry, using those in the relational database technology which can be reused in the Program.

• G1387: Identify data elements created during Program development for registering in the Data Element Gallery
of the DoD MetaData Registry.

• G1389: Publish database tables which are of common interest by registering them in the Reference Data Set
Gallery of the DoD Metadata Registry.

• G1390: Standardize on the terminology published by relevant Communities of Interest (COIs) listed in the
Taxonomy Gallery of the DoD Metadata Registry.

• G1726: Define XML Schemas using XML Schema Definition (XSD).

• G1753: Declare the XML schema version with an XML attribute in the root XML element of the schema
definition.

• G1729: Annotate XML type definitions.

• G1647: Provide access to the Federated Search Services.

• G1125: Use the Department of Defense Metadata Specification (DDMS) for standardized tags and taxonomies.

Best Practices

• BP1392: Register services in accordance with a documented service registration plan.

• BP1865: Provide sufficient program, project, or initiative metadata descriptions and automated support to enable
mediation and translation of the data between interfaces.

Examples

• A database table and relationship structure

• A document type definition (DTD)

Part 2: Traceability

Page 19

• A data structure used to pass information between systems

• An XML schema document (XSD) that represents a data structure and related information encoded as XML

Part 2: Traceability

Page 20

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Data > Design Tenet: Be Responsive to User Needs

P1258: Design Tenet: Be Responsive to User Needs

Include users in processes for creating discoverable, accessible, understandable, and trusted information and services.
Understanding information interoperability creates an enviroment that can be responsive to users. User feedback
mechanisms provide a means of capturing and reporting user satisfaction and give portfolio managers decision making
information to steer investments, developments and improvements. Service and information providers in a mission area
should work together to define the processes for using the user feedback for service and information improvements
because these processes are specific to a portfolio of capabilities in the enterprise.

Considerations

• Provide a capability for capturing, tracking, and responding to user feedback.

• Collaborate with COIs in responding to user feedback.

• Ensure that user feedback is visible to the net-centric environment.

• Ensure that processes exist for consumers to do the following:

• Request additional information from the information provider

• Request changes in the format, i.e., syntax or semantics, of visible information

• Report a problem with the information

• Establish metrics for determining responsiveness to user needs.

Guidance

• G1382: Be associated with one or more Communities of Interest (COIs).

• G1383: Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

• G1384: Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.

• G1386: Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata
Registry, using those in the relational database technology which can be reused in the Program.

• G1388: Use predefined commonly used database tables in the DoD Metadata Registry.

• G1389: Publish database tables which are of common interest by registering them in the Reference Data Set
Gallery of the DoD Metadata Registry.

• G1390: Standardize on the terminology published by relevant Communities of Interest (COIs) listed in the
Taxonomy Gallery of the DoD Metadata Registry.

• G1391: Identify taxonomy additions or changes in conjunction with the Communities of Interest (COIs) during
the Program development for potential inclusion in the Taxonomy Gallery of the DoD Metadata Registry.

• G1571: Maintain a comprehensive list of all the Communities of Interest (COIs) to which the Components of a
Node belong.

• G1575: Designate Node representatives to relevant Communities of Interest (COIs) in which Components of the
Node participate.

• G1760: Solicit feedback from users on user interface usability problems.

Part 2: Traceability

Page 21

Best Practices

• BP1392: Register services in accordance with a documented service registration plan.

• BP1867: Use metrics to track responsiveness to user information sharing needs.

Part 2: Traceability

Page 22

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Services

P1249: Services

A service is a contractually defined behavior a software component provides through a well-defined, published and
shareable interface. The service concept is based on implementation characteristics like loose coupling, location
independence, etc., that are inherently net-centric; this enables the rapid development and deployment of capabilities
that, combined with other services, can provide a range of simple and complex functions that could be shared across
diverse applications and management boundaries and woven into mission threads or business flows.

Note: For more information on service characteristics see Service-Oriented Architecture [P1304] in Part 1.

Detailed Perspectives

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Design Tenet: Scalability
Design Tenet: Availability
Design Tenet: Accommodate Heterogeneity
Design Tenet: Decentralized Operations and Management
Design Tenet: Enterprise Service Management

http://nesipublic.spawar.navy.mil/nesix/View/P1304
http://nesipublic.spawar.navy.mil/nesix/View/P1304

Part 2: Traceability

Page 23

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Services > Design Tenet: Service-Oriented Architecture (SOA)

P1259: Design Tenet: Service-Oriented Architecture (SOA)

Service-Oriented Architecture (SOA) is an architectural design style for building flexible, adaptable and distributed
computing environments where functionality is exposed and shared across enterprise by the means of services.

Note: For more information on service-oriented architecture and service characteristics that enable the sharing
of services across an enterprise see Service-Oriented Architecture [P1304] in Part 1.

Considerations

Web Services

• Build Web services in accordance with the technical standards and conformance requirements prescribed by
the current version of the WS-I Basic Profile. [R1237]

• Use the WS-I Sample Application as a model for implementing and documenting Web services.

• Use test tools authorized by WS-I that verify conformance with the current version of the WS-I Basic
Profile.

• Build and develop security extensions as prescribed in the current version of the WS-I Basic Security
Profile.

Service Description

• Describe services using a standard Service Definition Framework (SDF). The SDF Perspective [P1296]
provides a detailed specification for service definition and implementation. The SDF should address the
following information for each service:

• What the service does

• How the service works (from a "black box" perspective)

• Required security mechanisms or restrictions

• Performance or quality of service (Q0S) information

• Points of contact for the service

• The specifics of how to bind to (access or use) the service

Service Access Point (SAP)

• Describe services provided by a system's SAPs. From a service provider perspective, SAPs can be
abstracted away from the back-end or internal processing activities of the service. Looser coupling between
SAP and service internals enables a service provider to change the internal workings of the back end, such
as moving to a new version of a database, without changing the SAP.

Service Design

• Design services around operational requirements and service consumers' needs.

• Base the service specifications on the needs of the initial users, since it is impossible to know all the
possible service consumers.

http://nesipublic.spawar.navy.mil/nesix/View/P1304
http://nesipublic.spawar.navy.mil/nesix/View/P1304
http://nesipublic.spawar.navy.mil/nesix/View/P1286

Part 2: Traceability

Page 24

• Provide an extensible interface so the service design can support future needs.

Service Design Characteristics

• Design services in accordance with best practices and patterns. For example, a service design should
specify the information objects that are communicated across its interface in terms of enterprise metadata
(e.g., time, location). These enable semantic agreement between the information objects.

• Design information objects to minimize the number of transactions across the service interface. An example
of this is a request for an Authority to Operate (ATO), possibly constrained by a time and location attribute,
followed by a reply containing the ATO that is applicable to a specific area of interest and time.

Service Implementation Characteristics

• Implementation information focuses on the technical implementation details that prospective service
developers or providers need to design new services, or a service that uses another service. These attributes
typically include items like the WSDL description of the service, details of a service's API interface point, and
a description of service dependencies. Implement services using the following practices:

• Document the open standards used.

• Use vendor and platform independent messages.

• Identify addresses using a Universal Resource Identifiers (URI).

• Use defined and documented service interfaces.

• Register XML interface descriptions using the DoD Metadata Registry and Clearinghouse.

• Pass enterprise or COI objects, defined by their respective metadata, across its service interface.

• Use extensible service interfaces with versioning, independent of the interface implementation version.

Service Level Agreement (SLA)

• Document a Service Level Agreement (SLA) to do the following:

• Include quantitative measures for service usage, performance analysis, continuity of operations plan,
and performance across the range of bandwidths provided by the node.

• Have terms that the node's management services can monitor and manage.

• Define responsibility for day-to-day service operations and procedures for reporting problems.

Service Interfaces

• Interface information should include descriptions of service features, service functionality, service provider
identification, instructions on how to access and use the service through the SAP, and so on. The interface
information should also discuss the different form factors that a service supports, such as a PDA.

• Express the Web service interfaces in WSDL in accordance with the current version of the WS-I Basic
Profile.

• Register all XML schema files imported into WSDL under the appropriate namespace in the DoD XML
Registry.

• At a minimum, store WSDL files in a file accessible via URL and HTTP.

Node Responsibilities for Services

Part 2: Traceability

Page 25

• The node infrastructure should enable mission application software to be instantiated as services; this
includes software libraries that support SOAP and WSDL processing. Node responsibilities include the
following:

• Using Web services standards (SOAP and WSDL) to interoperate applications across nodes.

• Providing secure access to components in accordance with node and GIG IA/Security policies and
services.

• Designing services to be managed by the node in accordance with enterprise policy. Management
services will typically be part of the node component framework environment (e.g., Java EE application
server, .NET management environment) that is used in conjunction with NCES Enterprise Service
Management.

• Providing the capability to name and register components for local use within the node (e.g., JNDI).
Component registration mechanisms shall interface or extend to service registration mechanisms, such
as registration in the NCES Discovery service. If the component is only visible to the local node, it does
not have to be registered in the NCES Discovery service.

Service Registration

• Systems register services using the standard service metadata in a directory available to the nodes in the
enterprise. This directory may be based in the node, in an NCES Discovery Service, or both. At a minimum,
identify a service by a Universal Resource Identifier (URI).

• Nodes register services as resources with the NCES Policy Management Service and control access to
services using the NCES Policy Decision Services. The NCES Resource Attribute Services must provide
access to service attributes.

Service Security

• Security information provides detailed information about the security specifications of the service, such as
restrictions on who can use or access the service, for example indicating that the user must present a valid
DoD PKI certificate to access the service.

• A security framework is required at the node level to authenticate principals, ensure confidentiality and
integrity of messages and authorize access.

• Use security mechanisms provided by the node. These must include mutal authentication over an encrypted
channel such as SSL, authorization, confidentiality, integrity and non-repudiation.

• Services must support role-based access control (RBAC) mechanisms.

• Nodes should provide interfaces to NCES security services.

• Nodes should establish trust relationships with other nodes in the enterprise using the NCES Domain
Federation Service.

Support for Service Orchestration

• Provide the capability to compose mission capabilities from one or more services using a service
orchestration or workflow mechanism based on industry standards such as BPEL.

Guidance

• G1001: Use formal standards to define public interfaces.

• G1002: Separate public interfaces from implementation.

Part 2: Traceability

Page 26

• G1003: Separate the contents of application libraries that are to be shared from libraries that are to be used
internally.

• G1004: Make public interfaces backward-compatible within the constraints of a published deprecation policy.

• G1005: Separate infrastructure capabilities from mission functions.

• G1007: Ensure that applications use open, standardized, vendor-neutral API(s).

• G1008: Isolate platform-specific interfaces and vendor dependencies.

• G1010: Use open-standard logging frameworks.

• G1011: Make components independently deployable.

• G1012: Use a set of services to expose Component functionality.

• G1014: Access databases through open standard interfaces.

• G1018: Assign version identifiers to all public interfaces.

• G1019: Deprecate public interfaces in accordance with a published deprecation policy.

• G1021: Create fully insulated classes.

• G1022: Insulate public interfaces from compile-time dependencies.

• G1027: Internally document all source code developed with DoD funding.

• G1030: Use a standard GUI component library.

• G1032: Validate all input fields.

• G1035: Follow W3C standards for code which will generate a Web page display.

• G1043: Separate formatting from data through the use of style sheets instead of hard coded HTML attributes.

• G1044: Comply with Federal accessibility standards contained in Section 508 of the Rehabilitation Act of 1973
(as amended) when developing software user interfaces.

• G1045: Define XML format information separately in XSL.

• G1050: In ASP, isolate the presentation tier from the middle tier using COM objects.

• G1052: Use the code-behind feature in ASP.NET to separate presentation code from the business logic.

• G1053: Do not embed HTML code in any code-behind code used by aspx pages.

• G1056: Specify a versioning policy for .NET assemblies.

• G1058: Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

• G1060: Encapsulate Java code that is used in JSP(s) in tag libraries.

• G1071: Use vendor-neutral interface connections to the enterprise (e.g., LDAP, JNDI, JMS, databases).

• G1073: Isolate vendor extensions to enterprise-services standard interfaces.

• G1078: Document the use of non-Java EE-defined deployment descriptors.

http://www.w3.org/

Part 2: Traceability

Page 27

• G1079: Isolate tailorable data values into the deployment descriptors for Java EE applications.

• G1080: Adhere to the Web Services Interoperability Organization (WS-I) Basic Profile specification for Web
service environments.

• G1082: Use the document-literal style for all data transferred using SOAP where the document uses the World
Wide Web Consortium (W3C) Document Object Model (DOM).

• G1083: Do not pass Web Services-Interoperability Organization (WS-I) Document Object Model (DOM)
documents as strings.

• G1084: Validate documents transferred using SOAP against the W3C XML Standard by an XML Schema
Definition (XSD) defined by the Community of Interest (COI).

• G1085: Establish a registered namespace in the XML Gallery in the DoD Metadata Registry for all DoD
Programs.

• G1087: Validate all Web Services Definition Language (WSDL) files that describe Web services.

• G1088: Use isolation design patterns to define system functionality that manipulates Web services.

• G1090: Do not hard-code a Web service's endpoint.

• G1093: Implement exception handlers for SOAP-based Web services.

• G1095: Use W3C fault codes for all SOAP faults.

• G1101: Use Web services to bridge Java EE and .NET.

• G1118: Localize CORBA vendor-specific source code into separate modules.

• G1119: Isolate user-modifiable configuration parameters from the CORBA application source code.

• G1121: Do not modify CORBA Interface Definition Language (IDL) compiler auto-generated stubs and skeletons.

• G1123: Use the Fat Operation Technique in IDL operator invocation.

• G1125: Use the Department of Defense Metadata Specification (DDMS) for standardized tags and taxonomies.

• G1127: Use a UDDI specification that supports publishing discovery services.

• G1131: Use industry standard Universal Description, Discovery, and Integration (UDDI) APIs for all UDDI
inquiries.

• G1132: Implement the data tier using commercial off-the-shelf (COTS) relational database management
system (RDBMS) products that implement the SQL standard.

• G1141: Use standard data models developed by Communities of Interest (COI) as the basis of program or
project data models.

• G1144: Develop two-level database models: one level captures the conceptual or logical aspects, and the other
level captures the physical aspects.

• G1146: Include information in the data model necessary to generate a data dictionary.

• G1147: Use domain analysis to define the constraints on input data validation.

• G1148: Normalize data models.

• G1151: Define declarative foreign keys for all relationships between tables to enforce referential integrity.

Part 2: Traceability

Page 28

• G1153: Separate application, presentation, and data tiers.

• G1154: Use stored procedures for operations that are focused on the insertion and maintenance of data.

• G1155: Use triggers to enforce referential or data integrity, not to perform complex business logic.

• G1190: Use a build tool.

• G1202: Use the CORBA Portable Object Adapter (POA) instead of the Basic Object Adapter (BOA).

• G1203: Localize frequently used CORBA-specific code in modules that multiple applications can use.

• G1204: Create configuration services to provide distributed user control of the appropriate configuration
parameters.

• G1205: Use non-source code persistence to store all user-modifiable CORBA service configuration parameters.

• G1208: Add new functionality rather than redefining existing interfaces in a manner that brings incompatibility.

• G1209: For Java, use JDK logging facilities.

• G1210: For .NET, use Debug and Trace from the System.Diagnostics namespace.

• G1217: Develop and use externally configurable components.

• G1218: Use a build tool that supports operation in an automated mode.

• G1219: Use a build tool that checks out files from configuration control.

• G1220: Use a build tool that compiles source code and dependencies that have been modified.

• G1221: Use a build tool that creates libraries or archives after all required compilations are completed.

• G1222: Use a build tool that creates executables.

• G1223: Use a build tool that is capable of running unit tests.

• G1224: Use a build tool that cleans out intermediate files that can be regenerated.

• G1225: Use a build tool that is independent of the Integrated Development Environment.

• G1236: Do not hard-code the endpoint of a Web service vendor.

• G1237: Do not hard-code the configuration data of a Web service vendor.

• G1239: Use design patterns (e.g., facade, proxy, or adapter) or property files to isolate vendor-specifics of
vendor-dependent connections to the enterprise.

• G1245: Isolate the Web service portlet from platform dependencies using the Web Services for Remote
Portlets (WSRP) Specification protocol.

• G1267: Use industry standard HTML data entry fields on Web pages.

• G1268: Label all data entry fields.

• G1270: Include scroll bars for text entry areas if the data buffer is greater than the viewable area.

• G1271: Provide instructions and HTML examples for all style sheets.

• G1276: Do not modify the contents of the Web browser's status bar.

Part 2: Traceability

Page 29

• G1277: Do not use tickers on a Web site.

• G1278: Use the browser default setting for links.

• G1283: Use linked style sheets rather than embedded styles.

• G1284: Use only one font for HTML body text.

• G1285: Use relative font sizes.

• G1286: Provide text labels for all buttons.

• G1287: Provide feedback when a transaction will require the user to wait.

• G1292: Use text-based Web site navigation.

• G1293: Use descriptive labels for all clickable graphics.

• G1294: Provide a site map on all Web sites.

• G1295: Provide redundant text links for images within an HTML page.

• G1356: Use the SOAP standard for all Web services.

• G1566: Use alt attributes to provide alternate text for non-text items such as images.

• G1569: Maintain a comprehensive list of all of the Components that are part of the Node.

• G1573: Define the enterprise design patterns that a Node supports.

• G1574: Define which enterprise design patterns a Component requires.

• G1579: Define which Enterprise Services the Node will host locally when the Node becomes operational.

• G1580: Define which Enterprise Services will be hosted over the Global Information Grid (GIG) when the Node
becomes operational.

• G1581: Expose legacy system or application functionality through the use of a service that uses a facade
design pattern.

• G1635: Make Nodes that will be part of the Global Information Grid (GIG) consistent with the GIG Integrated
Architecture.

• G1636: Comply with the Net-Centric Operations and Warfare Reference Model (NCOW RM).

• G1637: Make Node-implemented directory services comply with the directory services Global Information Grid
(GIG) Key Interface Profiles (KIPs).

• G1638: Comply with the directory services Global Information Grid (GIG) Key Interface Profiles (KIPs) in Node
directory services proxies.

• G1713: Use an Operating Environment (OE) for all SCA applications that includes middleware that, at a
minimum, provides the services and capabilities specified by Minimum CORBA Specification version 1.0.

• G1714: Develop Software Communications Architecture (SCA) applications to use only Operating
Environment functionality defined by the SCA Application Environment Profile.

• G1641: Comply with the Service Discovery Global Information Grid (GIG) Key Interface Profiles (KIPs) in
Node-implemented Service Discovery (SD).

Part 2: Traceability

Page 30

• G1642: Comply with the Service Discovery Global Information Grid (GIG) Key Interface Profiles (KIPs) in
Node Service Discovery (SD) proxies.

Best Practices

• BP1863: Make shareable data assets visible, even if they are not accessible.

• BP1689: Use the Service Discovery (SD) pilot program to practice and exercise the mechanics of service
discovery and late binding.

Part 2: Traceability

Page 31

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Services > Design Tenet: Open Architecture

P1268: Design Tenet: Open Architecture

Design mission application software to be separable from the supporting node and to access the node through public
interfaces based on standards governed by a recognized standards organization (e.g., IEEE, W3C, OASIS).

Considerations

Component Based

• Architect mission application software in the node as components integrated within a node. Provide run-
time and resource management services (e.g., component management, security, virtual machines, memory
management, object management, resource pooling).

• Include component frameworks in the node based on commercially available solutions without proprietary
extensions. Wrap any extensions, if used, via the appropriate design pattern.

• Architect and manage mission application software that spans multiple nodes in a manner that aligns with all
of the supporting nodes.

Note: Examples include Java Platform, Enterprise Edition (Java EE), Common Object Request Broker
Architecture (CORBA), .NET Framework, and Data Distribution System (DDS).

Public Interfaces

• Provide the mechanism on the node for components to expose public interfaces. The interface must be
separate from the implementation. Base the public interface mechanism on the node component framework.
These public interfaces must be visible to other components in the node.

Layered Software Architecture

• Layer application software using an N-tier architecture. At a minimum, use discrete client, presentation,
middle, and data tiers.

• Client Tier -The client tier supports a wide range of device types such as desktop computers, laptops,
mobile, wireless, and personal digital assistant (PDA). It supports direct interaction with the user.

• Presentation Tier - The presentation tier provides content to a range of client device types supported
by the node (e.g., Hypertext, eXtensible or Wireless Markup Language [HTML, XML, WML]). Implement
presentation components with the mechanisms in the node's component framework.

• Middle Tier - The middle tier supports the construction of componentized business logic and public
interfaces (e.g., interface classes). Base business components on programming mechanisms provided
by the component framework chosen by the node (e.g. Enterprise Java Beans, CORBA services,
COM components). Specific business logic elements, such as data validation, may reside in other tiers.

• Data Tier - Base access to the data tier within nodes on industry open-standard mechanisms such a
SQL or JDBC/ODBC. Use services to access data across nodes.

Wrapping Legacy Systems

• Wrap legacy application software with an interface that is accessible from the node; for example, use Java
Connector Architecture on a Java EE platform. See Part 3: Migration Guidance (e.g., Pattern: Wrapping
Legacy Code into a Service) for additional information on wrapping legacy systems.

Guidance

http://www.ieee.org/
http://www.w3.org/
http://www.oasis-open.org/
http://nesipublic.spawar.navy.mil/nesix/View/P1219
http://nesipublic.spawar.navy.mil/nesix/View/P1219

Part 2: Traceability

Page 32

• G1001: Use formal standards to define public interfaces.

• G1002: Separate public interfaces from implementation.

• G1003: Separate the contents of application libraries that are to be shared from libraries that are to be used
internally.

• G1004: Make public interfaces backward-compatible within the constraints of a published deprecation policy.

• G1005: Separate infrastructure capabilities from mission functions.

• G1007: Ensure that applications use open, standardized, vendor-neutral API(s).

• G1008: Isolate platform-specific interfaces and vendor dependencies.

• G1010: Use open-standard logging frameworks.

• G1011: Make components independently deployable.

• G1012: Use a set of services to expose Component functionality.

• G1014: Access databases through open standard interfaces.

• G1018: Assign version identifiers to all public interfaces.

• G1019: Deprecate public interfaces in accordance with a published deprecation policy.

• G1021: Create fully insulated classes.

• G1022: Insulate public interfaces from compile-time dependencies.

• G1027: Internally document all source code developed with DoD funding.

• G1030: Use a standard GUI component library.

• G1032: Validate all input fields.

• G1035: Follow W3C standards for code which will generate a Web page display.

• G1043: Separate formatting from data through the use of style sheets instead of hard coded HTML attributes.

• G1044: Comply with Federal accessibility standards contained in Section 508 of the Rehabilitation Act of 1973
(as amended) when developing software user interfaces.

• G1045: Define XML format information separately in XSL.

• G1050: In ASP, isolate the presentation tier from the middle tier using COM objects.

• G1052: Use the code-behind feature in ASP.NET to separate presentation code from the business logic.

• G1053: Do not embed HTML code in any code-behind code used by aspx pages.

• G1056: Specify a versioning policy for .NET assemblies.

• G1058: Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

• G1060: Encapsulate Java code that is used in JSP(s) in tag libraries.

• G1071: Use vendor-neutral interface connections to the enterprise (e.g., LDAP, JNDI, JMS, databases).

http://www.w3.org/

Part 2: Traceability

Page 33

• G1073: Isolate vendor extensions to enterprise-services standard interfaces.

• G1078: Document the use of non-Java EE-defined deployment descriptors.

• G1079: Isolate tailorable data values into the deployment descriptors for Java EE applications.

• G1080: Adhere to the Web Services Interoperability Organization (WS-I) Basic Profile specification for Web
service environments.

• G1082: Use the document-literal style for all data transferred using SOAP where the document uses the World
Wide Web Consortium (W3C) Document Object Model (DOM).

• G1083: Do not pass Web Services-Interoperability Organization (WS-I) Document Object Model (DOM)
documents as strings.

• G1084: Validate documents transferred using SOAP against the W3C XML Standard by an XML Schema
Definition (XSD) defined by the Community of Interest (COI).

• G1085: Establish a registered namespace in the XML Gallery in the DoD Metadata Registry for all DoD
Programs.

• G1087: Validate all Web Services Definition Language (WSDL) files that describe Web services.

• G1088: Use isolation design patterns to define system functionality that manipulates Web services.

• G1090: Do not hard-code a Web service's endpoint.

• G1093: Implement exception handlers for SOAP-based Web services.

• G1095: Use W3C fault codes for all SOAP faults.

• G1101: Use Web services to bridge Java EE and .NET.

• G1118: Localize CORBA vendor-specific source code into separate modules.

• G1119: Isolate user-modifiable configuration parameters from the CORBA application source code.

• G1121: Do not modify CORBA Interface Definition Language (IDL) compiler auto-generated stubs and skeletons.

• G1123: Use the Fat Operation Technique in IDL operator invocation.

• G1125: Use the Department of Defense Metadata Specification (DDMS) for standardized tags and taxonomies.

• G1127: Use a UDDI specification that supports publishing discovery services.

• G1131: Use industry standard Universal Description, Discovery, and Integration (UDDI) APIs for all UDDI
inquiries.

• G1132: Implement the data tier using commercial off-the-shelf (COTS) relational database management
system (RDBMS) products that implement the SQL standard.

• G1141: Use standard data models developed by Communities of Interest (COI) as the basis of program or
project data models.

• G1144: Develop two-level database models: one level captures the conceptual or logical aspects, and the other
level captures the physical aspects.

• G1153: Separate application, presentation, and data tiers.

• G1190: Use a build tool.

Part 2: Traceability

Page 34

• G1202: Use the CORBA Portable Object Adapter (POA) instead of the Basic Object Adapter (BOA).

• G1203: Localize frequently used CORBA-specific code in modules that multiple applications can use.

• G1204: Create configuration services to provide distributed user control of the appropriate configuration
parameters.

• G1205: Use non-source code persistence to store all user-modifiable CORBA service configuration parameters.

• G1208: Add new functionality rather than redefining existing interfaces in a manner that brings incompatibility.

• G1209: For Java, use JDK logging facilities.

• G1210: For .NET, use Debug and Trace from the System.Diagnostics namespace.

• G1213: Provide an architecture design document.

• G1214: Provide a document with a plan for deprecating obsolete interfaces.

• G1215: Provide a coding standards document.

• G1216: Provide a software release plan document.

• G1217: Develop and use externally configurable components.

• G1218: Use a build tool that supports operation in an automated mode.

• G1219: Use a build tool that checks out files from configuration control.

• G1220: Use a build tool that compiles source code and dependencies that have been modified.

• G1221: Use a build tool that creates libraries or archives after all required compilations are completed.

• G1222: Use a build tool that creates executables.

• G1223: Use a build tool that is capable of running unit tests.

• G1224: Use a build tool that cleans out intermediate files that can be regenerated.

• G1225: Use a build tool that is independent of the Integrated Development Environment.

• G1236: Do not hard-code the endpoint of a Web service vendor.

• G1237: Do not hard-code the configuration data of a Web service vendor.

• G1239: Use design patterns (e.g., facade, proxy, or adapter) or property files to isolate vendor-specifics of
vendor-dependent connections to the enterprise.

• G1245: Isolate the Web service portlet from platform dependencies using the Web Services for Remote
Portlets (WSRP) Specification protocol.

• G1267: Use industry standard HTML data entry fields on Web pages.

• G1271: Provide instructions and HTML examples for all style sheets.

• G1276: Do not modify the contents of the Web browser's status bar.

• G1278: Use the browser default setting for links.

• G1284: Use only one font for HTML body text.

Part 2: Traceability

Page 35

• G1285: Use relative font sizes.

• G1356: Use the SOAP standard for all Web services.

• G1573: Define the enterprise design patterns that a Node supports.

• G1574: Define which enterprise design patterns a Component requires.

• G1581: Expose legacy system or application functionality through the use of a service that uses a facade
design pattern.

• G1626: Identify which Core Enterprise Services (CES) capabilities the Node Components require.

• G1627: Identify the priority of each Core Enterprise Services (CES) capability the Node Components require.

• G1629: Identify which Net-Centric Enterprise Services (NCES) capabilities the Node requires during
deployment.

• G1630: Comply with the applicable Global Information Grid (GIG) Key Interface Profiles (KIPs) for
implemented Core Enterprise Services (CES) in the Node.

• G1631: Expose Core Enterprise Services (CES) that comply with the applicable Global Information Grid (GIG)
Key Interface Profiles (KIPs) in all Node services proxies.

• G1713: Use an Operating Environment (OE) for all SCA applications that includes middleware that, at a
minimum, provides the services and capabilities specified by Minimum CORBA Specification version 1.0.

• G1714: Develop Software Communications Architecture (SCA) applications to use only Operating
Environment functionality defined by the SCA Application Environment Profile.

• G1724: Develop XML documents to be well formed.

• G1725: Develop XML documents to be valid XML.

• G1726: Define XML Schemas using XML Schema Definition (XSD).

• G1727: Provide names for XML type definitions.

• G1728: Define types for all XML elements.

• G1729: Annotate XML type definitions.

• G1737: Define a target namespace in schemas.

• G1738: Define a qualified namespace for the target namespace.

• G1746: Develop XSLT stylesheets that are XSLT version agnostic.

• G1753: Declare the XML schema version with an XML attribute in the root XML element of the schema
definition.

• G1754: Give each new XML schema version a unique URL.

• G1770: Explicitly define the Data Distribution Service (DDS) Domains for the system.

Best Practices

• BP1863: Make shareable data assets visible, even if they are not accessible.

Part 2: Traceability

Page 36

• BP1864: Layer architectures to support clear boundaries between data management, presentation, and business
logic functionality.

Part 2: Traceability

Page 37

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Services > Design Tenet: Scalability

P1270: Design Tenet: Scalability

Design services and components to use resource management mechanisms that the hosting Node provides to enable
scalability under load. For example, use buffer and connection pools, tuned to the expected user load, to enable
concurrent user sessions with acceptable performance.

• Scalability is the extent to which the organization, program, project, or initiative can grow to accommodate additional
users. Scalable components are either co-located or globally distributed. Scalability of computing infrastructure
(CI) components and CI-related doctrine, organization, training, materiel, leadership and education, personnel, and
facilities (DOTMLPF) allows for rapidly implemented increases in capacity and capability to support program, project,
and initiative growth or dynamically changing requirements.

To the greatest extent possible given bandwidth and technical environment considerations, make services accessible
in an open-systems, interface-driven, distributed computing environment with reusable components available to the
enterprise. Acceptable Web-based methods are represented by Internet standards and protocols registered in the
Defense IT Standards Registry (DISR) and managed by the DoD IT Standards Committee (ITSC). To the greatest
extent possible, the service design should include considerations for potential edge users with limited bandwidth access
and limited display or storage capacity. As enterprise services emerge, the infrastructure should establish new parameters
related to maintainability, scalability, performance, orchestration, accreditation, and availability.

Considerations

Design Factors

• System architects, program managers, and designers for a program, project or initiative should consider a
vision that includes growth projections for the program's foreseeable future.

Assessing Scalability Requirements

• Assess and evaluate requirements and capabilities of services to understand scalability hot spots better

• Properly estimate usage patterns

• Manage user authentication/authorization

• Manage session state where applicable

• Scale user or internal facing Web sites

• Scale data resources

• Scale CPU load

Stateless Service

• Each message that a consumer sends to a provider must contain all necessary information for the provider
to process it. This constraint makes a service provider more scalable because the provider does not have to
store state information between requests.

Stateful Service

• Stateful service is difficult to avoid in a number of situations. For example, establishing a session between
a consumer and a provider for efficiency reasons such as sending a security certificate with each request.
The process creates a load for both consumer and provider. It is much quicker to replace the certificate with
a token shared just between the consumer and provider. Stateful services require both the consumer and the
provider to share the same consumer-specific context, which is either included in or referenced by messages

Part 2: Traceability

Page 38

exchanged between the provider and the consumer. The problem with this constraint is that it potentially
reduces the overall scalability of the service. The service provide must remember context for each consumer.
Coupling between a service provider and a consumer is increased. Switching service providers is more
difficult.

Guidance

• G1012: Use a set of services to expose Component functionality.

• G1082: Use the document-literal style for all data transferred using SOAP where the document uses the World
Wide Web Consortium (W3C) Document Object Model (DOM).

• G1088: Use isolation design patterns to define system functionality that manipulates Web services.

• G1123: Use the Fat Operation Technique in IDL operator invocation.

• G1153: Separate application, presentation, and data tiers.

• G1283: Use linked style sheets rather than embedded styles.

• G1352: Use database clustering and redundant array of independent disks (RAID) for high availability of data.

• G1572: Include the Node as a party to any Service Level Agreements (SLAs) signed by any of the Components
of the Node.

Best Practices

• BP1864: Layer architectures to support clear boundaries between data management, presentation, and business
logic functionality.

Part 2: Traceability

Page 39

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Services > Design Tenet: Availability

P1271: Design Tenet: Availability

As the net-centric environment evolves, an ever increasing number of information services will become available to DoD
users. At the same time, infrastructure support for these services will also transform to net-centric standards # leveraging
shared processing and storage on the GIG and dynamic allocation. It will be critical in this environment to maintain
acceptable and measurable levels of support for all enterprise capabilities. When users seek, find and use an Enterprise
Service, they will have certain expectations regarding its pedigree, reliability and availability. These attributes should be
consistent across all Enterprise Services.

Design services and components to meet the availability requirements of the node. The implementation should use the
maintenance strategies and management mechanisms provided by the Node's infrastructure.

Considerations

• While an Enterprise Service may be provided from anywhere in the Global Information Grid (GIG),
user expectations demand that they be hosted in environments that meet minimum GIG computing node
standards in terms of availability, support and backup.

Guidance

• G1352: Use database clustering and redundant array of independent disks (RAID) for high availability of data.

• G1572: Include the Node as a party to any Service Level Agreements (SLAs) signed by any of the Components
of the Node.

Best Practices

• BP1868: Incorporate mechanisms to enhance the survivability, resiliency, redundancy, and reliability of Computing
Infrastructure (CI).

Part 2: Traceability

Page 40

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Services > Design Tenet: Accommodate Heterogeneity

P1275: Design Tenet: Accommodate Heterogeneity

Th Global Information Grid (GIG) is a heterogeneous environment. No one product will meet the needs of potentially
vastly different operational environments. Services and Service-Oriented Architecture (SOA) related infrastructure will
need to interoperate across these diverse environments.

Considerations

Service Structure

• Design systems to be able to deploy services separately from the supporting node. The services should
access the node through public interfaces.

Service Configuration

• Design systems to be able to configure services on each node on which they are deployed. Use external
configuration file mechanisms (e.g., deployment descriptors for Java EE applications) to specify the
configuration. Do not use hard-coded configuration parameters that require a binary tool to update or that
require a recompile and relink.

Node Structure

• Nodes provide the infrastructure and rules for assembling, configuring, deploying, securing, operating,
and managing mission applications and services. For more information, see NESI Part 4: Node Guidance
[P1130].

• Nodes are responsible for provisioning their diverse mission application and services. They must configure
and operate them in accordance with enterprise management policy.

Guidance

• G1001: Use formal standards to define public interfaces.

• G1002: Separate public interfaces from implementation.

• G1003: Separate the contents of application libraries that are to be shared from libraries that are to be used
internally.

• G1004: Make public interfaces backward-compatible within the constraints of a published deprecation policy.

• G1005: Separate infrastructure capabilities from mission functions.

• G1007: Ensure that applications use open, standardized, vendor-neutral API(s).

• G1008: Isolate platform-specific interfaces and vendor dependencies.

• G1010: Use open-standard logging frameworks.

• G1011: Make components independently deployable.

• G1012: Use a set of services to expose Component functionality.

• G1014: Access databases through open standard interfaces.

• G1018: Assign version identifiers to all public interfaces.

http://nesipublic.spawar.navy.mil/nesix/View/P1130
http://nesipublic.spawar.navy.mil/nesix/View/P1130

Part 2: Traceability

Page 41

• G1019: Deprecate public interfaces in accordance with a published deprecation policy.

• G1021: Create fully insulated classes.

• G1022: Insulate public interfaces from compile-time dependencies.

• G1030: Use a standard GUI component library.

• G1032: Validate all input fields.

• G1035: Follow W3C standards for code which will generate a Web page display.

• G1043: Separate formatting from data through the use of style sheets instead of hard coded HTML attributes.

• G1044: Comply with Federal accessibility standards contained in Section 508 of the Rehabilitation Act of 1973
(as amended) when developing software user interfaces.

• G1045: Define XML format information separately in XSL.

• G1058: Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

• G1071: Use vendor-neutral interface connections to the enterprise (e.g., LDAP, JNDI, JMS, databases).

• G1073: Isolate vendor extensions to enterprise-services standard interfaces.

• G1080: Adhere to the Web Services Interoperability Organization (WS-I) Basic Profile specification for Web
service environments.

• G1082: Use the document-literal style for all data transferred using SOAP where the document uses the World
Wide Web Consortium (W3C) Document Object Model (DOM).

• G1083: Do not pass Web Services-Interoperability Organization (WS-I) Document Object Model (DOM)
documents as strings.

• G1084: Validate documents transferred using SOAP against the W3C XML Standard by an XML Schema
Definition (XSD) defined by the Community of Interest (COI).

• G1087: Validate all Web Services 4993 Tm [L3] Tsu() (rest)] TJ
/F1 10 Tf
0 g
1 0 0 -10436.969997 452.554993 Tm [() (()] TJ
/F3 10 Tf
0 0.501961 0 rg
1 0 0 -1 345.809997 452.554993 SDm [(XML)] TJ
/F1 10 Tf
0 g
1 0 0 -75 -1 16 452.554993 Tm [())Puses (format)describ the

http://www.w3.org/

Part 2: Traceability

Page 42

• G1141: Use standard data models developed by Communities of Interest (COI) as the basis of program or
project data models.

• G1153: Separate application, presentation, and data tiers.

• G1202: Use the CORBA Portable Object Adapter (POA) instead of the Basic Object Adapter (BOA).

• G1203: Localize frequently used CORBA-specific code in modules that multiple applications can use.

• G1204: Create configuration services to provide distributed user control of the appropriate configuration
parameters.

• G1208: Add new functionality rather than redefining existing interfaces in a manner that brings incompatibility.

• G1209: For Java, use JDK logging facilities.

• G1210: For .NET, use Debug and Trace from the System.Diagnostics namespace.

• G1217: Develop and use externally configurable components.

• G1236: Do not hard-code the endpoint of a Web service vendor.

• G1237: Do not hard-code the configuration data of a Web service vendor.

• G1239: Use design patterns (e.g., facade, proxy, or adapter) or property files to isolate vendor-specifics of
vendor-dependent connections to the enterprise.

• G1245: Isolate the Web service portlet from platform dependencies using the Web Services for Remote
Portlets (WSRP) Specification protocol.

• G1267: Use industry standard HTML data entry fields on Web pages.

• G1271: Provide instructions and HTML examples for all style sheets.

• G1276: Do not modify the contents of the Web browser's status bar.

• G1278: Use the browser default setting for links.

• G1284: Use only one font for HTML body text.

• G1285: Use relative font sizes.

• G1292: Use text-based Web site navigation.

• G1293: Use descriptive labels for all clickable graphics.

• G1295: Provide redundant text links for images within an HTML page.

• G1566: Use alt attributes to provide alternate text for non-text items such as images.

• G1713: Use an Operating Environment (OE) for all SCA applications that includes middleware that, at a
minimum, provides the services and capabilities specified by Minimum CORBA Specification version 1.0.

• G1714: Develop Software Communications Architecture (SCA) applications to use only Operating
Environment functionality defined by the SCA Application Environment Profile.

Best Practices

Part 2: Traceability

Page 43

• BP1864: Layer architectures to support clear boundaries between data management, presentation, and business
logic functionality.

• BP1870: Conform to DoD-specified data publication methods that are consistent with Global Information Grid
(GIG) enterprise and user technologies per DoD Directive 8101.1. [R1166]

Part 2: Traceability

Page 44

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Services > Design Tenet: Decentralized Operations and
Management

P1276: Design Tenet: Decentralized Operations and Management

Design services to provide a management interface that either the node's management services or the Net-Centric
Enterprise Services (NCES) Enterprise Service Management services can access. Intuitive management interfaces
provide operators with the toolset to be responsive to system operations, system changes, and maintenance needs.
Design management interfaces that new personnel can easily learn with minimum training to mitigate loss of knowledge
and skill sets caused by troop rotation or personnel turnover. Use COTS products with Web-based GUIs that enable
operators or administrators to make configuration changes easily, execute maintenance utilities (e.g., log capture,
backups), check operational performance/status, and facilitate user administration.

Considerations

• Support a decentralized operational concept where other systems, services, or capabilities are providing key
elements of the end-to-end net-centric solution.

• Provide an integrated digital environment to enhance communications and productivity for management and
operations of programs, projects or initiatives.

• Provide remote management capabilities that are employed to manage the distributed computing
infrastructure such as Telnet, Secure Shell, Web-based proprietary, Web-based COTS or customized COTS,
or other technologies.

• Provide security and access control mechanisms to facilitate management across differing security domains
in the DoD, Intelligence Community, other government agencies, and coalition partners.

Guidance

• G1204: Create configuration services to provide distributed user control of the appropriate configuration
parameters.

• G1606: Manage routers remotely from within the Node.

• G1347: Secure remote connections to a database.

• G1623: Implement personal firewall software on client or server hardware used for remote connectivity in
accordance with the Desktop Applications, Network and Enclave Security Technical Implementation Guides
(STIGs).

• G1245: Isolate the Web service portlet from platform dependencies using the Web Services for Remote
Portlets (WSRP) Specification protocol.

Part 2: Traceability

Page 45

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Services > Design Tenet: Enterprise Service Management

P1278: Design Tenet: Enterprise Service Management

Considerations

Service Management

• Service management includes tracking the development, deployment, and operation of services. Manage
services according to Node affiliation using available management services, either NCES Enterprise Service
Management or local services.

• Expose a service management interface that the node management services can access.

Provisioning of Enterprise Services

• Design the Node's applications and components to enable access to enterprise services as they become
available from DoD/DISA.

• When required, implement enterprise services locally at the Node based on technical standards provided by
DoD/DISA. When such standards are not specified, choose standards based on best commercial practice.

• Maintain a separable service implementation to enable the replacement of local Node implementations with
NCES services as they become available.

Guidance

• G1010: Use open-standard logging frameworks.

• G1032: Validate all input fields.

• G1093: Implement exception handlers for SOAP-based Web services.

• G1094: Catch all exceptions for application code exposed as a Web service.

• G1095: Use W3C fault codes for all SOAP faults.

• G1132: Implement the data tier using commercial off-the-shelf (COTS) relational database management
system (RDBMS) products that implement the SQL standard.

• G1155: Use triggers to enforce referential or data integrity, not to perform complex business logic.

• G1209: For Java, use JDK logging facilities.

• G1210: For .NET, use Debug and Trace from the System.Diagnostics namespace.

• G1276: Do not modify the contents of the Web browser's status bar.

• G1287: Provide feedback when a transaction will require the user to wait.

• G1639: Describe Components exposed by the Node as specified by the Service Definition Framework

• G1569: Maintain a comprehensive list of all of the Components that are part of the Node.

Best Practices

• BP1868: Incorporate mechanisms to enhance the survivability, resiliency, redundancy, and reliability of Computing
Infrastructure (CI).

Part 2: Traceability

Page 46

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Information Assurance/Security

P1240: Information Assurance/Security

Information assurance (IA) refers to measures that protect and defend information and information systems. The goal of
IA is to ensure confidentiality, integrity, availability, and accountability by providing capabilities to detect, monitor, react to,
and protect against attacks.

Many of the existing solutions to IA problems (and many of the requirements in existing IA regulations) assume that
both clients and servers are located on the same physical or logical network. They rely heavily on perimeter or boundary
protection. Service-oriented architecture (SOA) interoperability and loose coupling requirements make those security
models inadequate.

In SOA, the boundaries are not clearly defined. Services may be exposed to external clients and not bound to a physical
location. The client and service providers may be governed by different security policies.

Base a net-centric IA strategy on a service-level view of security rather than on perimeter security. Developing new
security models is necessary to determine how to establish the necessary trust relationships between service requestors
and service providers and to select the most adequate and appropriate authentication and authorization mechanisms. To
implement a net-centric IA strategy, programs should provide the following:

• Integrated identity management, permissions management, and digital rights management

• Adequate confidentiality, availability, and integrity

Detailed Perspectives

Design Tenet: Net-Centric IA Posture and Continuity of Operations
Design Tenet: Identity Management, Authentication, and Privileges
Design Tenet: Mediate Security Assertions
Design Tenet: Cross-Security-Domains Exchange
Design Tenet: Encryption and HAIPE
Design Tenet: Employment of Wireless Technologies
Other Design Tenets

Part 2: Traceability

Page 47

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Information Assurance/Security > Design Tenet: Net-Centric IA
Posture and Continuity of Operations

P1242: Design Tenet: Net-Centric IA Posture and Continuity of
Operations

This tenet refers to the assignment of Mission Assurance Category (MAC) and Confidentiality Level to a given application,
node, or system. The MAC reflects the importance of information relative to the achievement of DoD goals and objectives,
particularly the warfighter's combat mission. Mission Assurance Categories primarily determine the requirements for
availability and integrity.

There are three defined mission assurance categories:

• MAC I for systems with vital operational needs

• MAC II for systems that are important to deployed or contingency forces

• MAC III for systems supporting day-to-day businesses that do not materially affect support to deployed forces

The complete definitions for those categories are included in DoD Directive 8500.1. [R1197] The security requirement for
each combination of mission assurance category and its confidentiality level are in DoD Instruction 8500.2. [R1198]

Considerations

• When assigning a MAC in a net-centric environment, consider not just the intrinsic properties of the node or
service, but also its impact on other Information Operations that may call upon it.

• When developing a node or service, account for its potential use by other missions and adjust the
MAC appropriately. Incorporate adequate protection and integrity requirements into the design that are
commensurate with those potential uses.

• Typically, not all of the potential uses of a node or service are known up front. Therefore, developers
must make assumptions about how critical missions may use the node or service when they determine
requirements. It may be necessary to modify the MAC to accommodate future, critical missions.

Guidance

• G1634: Certify and accredit Components with all applicable DoD Information Assurance (IA) processes.

• G1632: Certify and accredit Nodes with all applicable DoD Information Assurance (IA) processes.

• G1633: Host only DoD Information Assurance (IA) certified and accredited Components.

• G1585: Provide a transport infrastructure for the Node that implements Global Information Grid (GIG)
Information Assurance (IA) boundary protections.

Best Practices

• BP1701: Configure Components for Information Assurance (IA) in accordance with the Network Security
Technical Implementation Guide (STIG).

• BP1672: Be prepared to integrate fully with the Information Assurance (IA) infrastructure.

Part 2: Traceability

Page 48

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Information Assurance/Security > Design Tenet: Identity
Management, Authentication, and Privileges

P1243: Design Tenet: Identity Management, Authentication, and
Privileges

Authentication mechanisms are based on credentials presented by the requestor. Those credentials may be something
the user knows (e.g., passwords), something the user is (e.g., biometrics), something the user has (e.g., smart card), or
any combination of these factors.

Each approach is associated with the strength of an authentication. The weakest methods are password-based and the
strongest are combinations of biometrics and smart cards.

There are also differing strengths within each method. For instance, systems that require complex passwords are stronger
than those that accept simple ones and systems using retina or fingerprint readers are stronger than those that use finger
length.

Components that are separate from the implementation of mission- or business-specific functionality often provide identity
authentication management and authorization.

Considerations

User Authentication

• Authentication normally occurs at the "edge" of an application or node, or at the very first network access.
Systems should strive to accept strong authentication methods as early as possible. If possible, migrate
authentication tasks to an authentication server and make systems rely on tokens or assertions from the
server for authentication. For closed community configurations, these schemes may involve the use of a
Kerberos-type single sign-on device.

Identity Management

• Use authentication assertions to propagate identities in a secure and trusted way throughout the enterprise.
Those assertions should indicate not only the identity and attributes of the requestor, but the strength of the
mechanism used to ascertain its identity.

• Generate a Trust Model to specify the proper trust relationships and the path for authentication assertions.

Multi-Tier Authentication

• While considering the specific method used and its relative strength, remember that in a Service-Oriented
Architecture (SOA) service providers may require stronger authentication than that invoked by the service
requestor. These cases may require a multi-tier authentication; i.e., re-authenticating the original requester
with the provider by transferring appropriate credentials.

• To avoid future multi-tier authentication problems, use strong authentication methods such as PKI certificates
whenever possible.

Authorization Processes

• Access authorizations are determined by the requester's attributes and by the nature and contents of the
request. Make the authorization decision at the access boundary, isolating the application from changes in
policy and authorization technology.

• Use node-managed security (sometimes referred to as declarative security, programmatic security, or
container-managed security), unless application requirements require programmatic authorizations, where
individual actions within the service are authorized based on the nature or parameters of the request.

Part 2: Traceability

Page 49

Role-Based Authorizations

• Roles are one way to establish authorized access control. In the Role-Based Access Control (RBAC)
environment, role privileges are the basis for access decisions. In RBAC, a trusted entity administers
users and their roles in association with the user identity. Users should never supply a mapping of users to
roles directly, but users may select one of multiple roles assigned to them when seeking access to system
functionality. Use the eXtensible Access Control Markup Language (XACML) to retrieve access control
information. XACML supports the exchange of access control information using XML. This allows adherence
to the principle of least privilege (see the following perspective for additional information on this principle:
Apply Principle of Least Privilege [P1317]).

Attribute-Based Authorizations

• Attribute-Based Access Control (ABAC) isolates the service provider from changes in the user population.
In the ABAC environment, a set of user attributes is the basis for access decisions. These attributes could
include, for example, level of clearance, level of training, and specific assignment location.

• When an application retrieves access control information from an external policy decision point or retrieves
policies for its own resources, it should do so with XACML which supports exchange of access control
information using XML. In general, authorization policies should be distinct from application functionality but
co-located and co-managed with those applications.

Validation of Authentication Information

• A service provider may receive requests that include the original authentication information from the
requestor. DoD uses Public Key Infrastructure (PKI) certificates for authentication information. A very
effective way for the provider to ascertain the validity of the authentication information is to confirm it through
a PKI mechanism.

• A service provider, when receiving requestor identification information through a security assertion, must
authenticate that an entity that the provider trusts has validated the assertion. PKI signatures provide a
means to accomplished this. The signatures must encompass and link both the assertion and the actual
request. The service provider must determine, if using PKI, the complete scheme of how to verify the
certificates, the timeliness of the requests, and the current validity of the credential (i.e., verification that the
certificates are revoked).

• Systems should migrate to PKI authentication as it become available, and start using it as a baseline to
provide enterprise authentication services.

Guidance

• G1300: Secure all endpoints.

• G1302: Validate all inputs.

• G1306: Identify and authenticate users of the application.

• G1307: Provide a security policy file.

• G1308: Configure Public Key Enabled applications to use a Federal Information Processing Standard (FIPS)
140-2 certified cryptographic module.

• G1309: Make applications handling high value unclassified information in Minimally Protected environments
Public Key Enabled to interoperate with DoD High Assurance .

• G1310: Protect application cryptographic objects and functions from tampering.

• G1311: Use Hypertext Transfer Protocol over Secure Socket Layer (HTTPS) when applications communicate
with DoD Public Key Infrastructure (PKI) components.

http://nesipublic.spawar.navy.mil/nesix/View/P1317
http://nesipublic.spawar.navy.mil/nesix/View/P1317

Part 2: Traceability

Page 50

• G1312: Make applications capable of being configured for use with DoD PKI.

• G1313: Provide documentation for application configuration and setup for use with DoD PKI.

• G1314: Provide applications the ability to import and export keys (software certificates only).

• G1315: For applications, use key pairs and Certificates created for individuals using DoD PKI methods and
procedures defined by the DoD Class 3 Public Key Infrastructure Interface Specification and the Personal
Information Exchange Syntax Standard.

• G1316: Ensure that applications protect private keys.

• G1317: Ensure applications store Certificates for subscribers (the owner of the Public Key contained in the
Certificate) when used in the context of signed and/or encrypted email.

• G1318: Develop applications such that they provide the capability to manage and store trust points (Certificate
Authority Public Key Certificates).

• G1319: Ensure applications can recover data encrypted with legacy keys provided by the DoD PKI Key Recovery
Manager (KRM).

• G1320: Use a minimum of 128 bits for symmetric keys.

• G1321: Enable applications to be capable of performing Public Key operations necessary to verify signatures on
DoD PKI signed objects.

• G1322: Ensure that applications that interact with the DoD PKI using SSL (i.e., HTTPS) are capable of encrypting
and decrypting data using the Triple Data Encryption Algorithm (TDEA).

• G1323: Generate random symmetric encryption keys when using symmetric encryption.

• G1324: Protect symmetric keys for the life of their use.

• G1325: Encrypt symmetric keys when not in use.

• G1326: Ensure applications are capable of producing Secure Hash Algorithm (SHA) digests of messages to
support verification of DoD PKI signed objects.

• G1327: Enable an application to obtain new Certificates for subscribers.

• G1328: Enable an application to retrieve Certificates for use, including relying party operations.

• G1330: Ensure applications are capable of checking the status of Certificates using a Certificate Revocation
List (CRL) if not able to use the Online Certificate Status Protocol (OCSP).

• G1331: Ensure applications are able to check the status of a Certificate using the Online Certificate Status
Protocol (OCSP).

• G1333: Only use a Certificate during the Certificate's validity range, as bounded by the Certificate's "Validity - Not
Before" and "Validity - Not After" date fields.

• G1335: Make applications capable of being configured to operate only with PKI Certificate Authorities specifically
approved by the application's owner/managing entity.

• G1338: Applications and Certificates need to be able to support multiple organizational units.

• G1341: Use a security manager support to restrict application access to privileged system resources.

• G1342: Restrict direct access to class internal variables to functions or methods of the class itself.

Part 2: Traceability

Page 51

• G1344: Encrypt sensitive data stored in configuration or resource files.

• G1357: Do not rely solely on transport level security like SSL or TLS.

• G1362: Validate incoming XML-based messages using a schema.

• G1363: Do not use clear text passwords.

• G1364: Hash all passwords using the combination of a timestamp, a nonce and the password for each message
transmission.

• G1365: Specify an expiration value for all security tokens.

• G1366: Digitally sign all messages where non-repudiation is required.

• G1367: Digitally sign message fragments that are required not to change during transport.

• G1369: Digitally sign all requests made to a security token service.

• G1371: Use the Digital Signature Standard for creating Digital Signatures.

• G1372: Use an X.509 Certificate to pass a Public Key.

• G1373: Encrypt messages that cross an IA boundary.

• G1374: Individually encrypt sensitive message fragments intended for different intermediaries.

• G1377: Use LDAP 3.0 or later to perform all connections to LDAP repositories.

• G1378: Encrypt communication with LDAP repositories.

• G1346: Audit database access.

• G1347: Secure remote connections to a database.

• G1349: Validate all input that will be part of any dynamically generated SQL.

• G1350: Implement a strong password policy for RDBMS.

• G1351: Enhance database security by using multiple user accounts with constraints.

• G1619: Configure clients with a Common Access Card (CAC) reader.

• G1652: Use DoD PKI X.509 certificates for servers.

• G1380: Use the XACML 2.0 standard for SAML-based rule engines.

• G1797: Use a minimum of 1024 bits for asymmetric keys.

Best Practices

• BP1375: Use asymmetric encryption for SOAP-based Web services.

Part 2: Traceability

Page 52

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Information Assurance/Security > Design Tenet: Mediate Security
Assertions

P1245: Design Tenet: Mediate Security Assertions

Use security assertions or security tokens to convey user authentication and access authorization to a service provider.
Security assertions and tokens are statements that an entity the service provider trusts has generated and validated.

Considerations

Security Assertions

• Use an XML-based standard such as the Security Assertion Markup Language (SAML) to transfer
assertions.

• For close community configurations, start with Kerberos security tokens. Establish implicit trust relationships
between entities to circumvent formal validations through the use of trusted channels (e.g., SSL transfers).

• Transfer security tokens or security assertions using the general purpose mechanism provided for
associating security tokens or assertions with SOAP message contents as specified in the WS-Security
Standard. Kerberos and other tokens shall use the Binary Security Token provision. Use SAML assertions in
the context of WS-Security as specified in the upcoming WS-Security SAML Token Profile. [R1246]

Chained Requests

• When requests need to be chained (i.e., forwarded to third parties), the security assertions must cover
the origin and destination, all intermediate assertions, and the required chain of trust. Earlier request
implementations may separate a chained request into separate transactions.

Guidance

• G1379: Use SAML version 2.0 for representing security assertions.

• G1380: Use the XACML 2.0 standard for SAML-based rule engines.

• G1359: Bind SOAP Web service security policy assertions to the service by expressing them in the
associated WSDL file.

• G1357: Do not rely solely on transport level security like SSL or TLS.

• G1322: Ensure that applications that interact with the DoD PKI using SSL (i.e., HTTPS) are capable of encrypting
and decrypting data using the Triple Data Encryption Algorithm (TDEA).

Part 2: Traceability

Page 53

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Information Assurance/Security > Design Tenet: Cross-Security-
Domains Exchange

P1246: Design Tenet: Cross-Security-Domains Exchange

Exchange information across security boundaries using air-gap interfaces, electronically enforced one-way interfaces,
content-based encryption, content-sensitive security guards, multilevel trusted databases, and multilevel systems. The
data exchange may be from low to high or high to low. In an NCW environment, many of the service requests and their
corresponding trust assertions may have to cross security boundaries; that is, they must originate and terminate at entities
with different security classification levels.

Considerations

Cross-Domain Services

• In a net-centric environment, enterprise-wide services are the most efficient way to handle data exchange
transactions and implement cross-domain solutions. Develop special cross-domain services to provide
validated resources capable of transferring information between security domains operating at different
security classifications. To support net-centric warfare effectively, cross-domain solutions must transition from
current models to an agile and flexible, robust and available, trusted yet economical solution set. The most
effective method is to provide those services at the enterprise level, compatible with the Global Information
Grid (GIG) and Net-Centric Enterprise Services (NCES).

• Incorporate the capabilities and procedures of centralized cross-domain solutions as they become available.
If possible, systems should demonstrate an evolution towards these enterprise-wide solutions. Rely on
existing secure guard solutions or one-way solutions until enterprise-wide solutions are available.

Note: See the following perspectives for additional considerations: Trusted Guards [P1150] and Cross-Domain
Interoperation [P1169].

Guidance

• G1341: Use a security manager support to restrict application access to privileged system resources.

• G1379: Use SAML version 2.0 for representing security assertions.

• G1380: Use the XACML 2.0 standard for SAML-based rule engines.

• G1613: Prepare a Node to host new Component services developed by other Nodes or by the enterprise itself.

• G1003: Separate the contents of application libraries that are to be shared from libraries that are to be used
internally.

Best Practices

• BP1698: Plan for the event that Component services within a Node cannot be invoked across security domains.

• BP1669: Select XML-capable trusted guards.

• BP1691: Use Node implemented Service Discovery (SD) to meet compartmentalization needs.

• BP1614: Prepare a Node for the possibility of becoming a new Component service within another Node.

http://nesipublic.spawar.navy.mil/nesix/View/P1150
http://nesipublic.spawar.navy.mil/nesix/View/P1150
http://nesipublic.spawar.navy.mil/nesix/View/P1169
http://nesipublic.spawar.navy.mil/nesix/View/P1169
http://nesipublic.spawar.navy.mil/nesix/View/P1169

Part 2: Traceability

Page 54

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Information Assurance/Security > Design Tenet: Encryption and
HAIPE

P1247: Design Tenet: Encryption and HAIPE

Enterprise services must enable secure transmission of identification and role assertions through the use of trusted
paths. A trusted path is a communications path where there is confidence alteration of data has not occured during
transport and the data are timely.

Note: The definition of "timely" is not the same for all types of information systems. Services should specify an
appropriate definition based on the type of information system (e.g., event-driven, transaction-based) and the
type of security threat (e.g., replay attack).

Considerations

• Use Secure Scokets Layer (SSL), Internet Protocol Security (IPSec), or High Assurance Internet Protocol
Encryption (HAIPE) protocols to secure transmission of identification and role assertions in a TCP/IP
environment. Incorporating message-level encryption may provide additional security.

Guidance

• G1305: Ensure the separation of encrypted and unencrypted information.

• G1322: Ensure that applications that interact with the DoD PKI using SSL (i.e., HTTPS) are capable of encrypting
and decrypting data using the Triple Data Encryption Algorithm (TDEA).

• G1323: Generate random symmetric encryption keys when using symmetric encryption.

• G1324: Protect symmetric keys for the life of their use.

• G1325: Encrypt symmetric keys when not in use.

• G1344: Encrypt sensitive data stored in configuration or resource files.

• G1357: Do not rely solely on transport level security like SSL or TLS.

• G1363: Do not use clear text passwords.

• G1364: Hash all passwords using the combination of a timestamp, a nonce and the password for each message
transmission.

• G1366: Digitally sign all messages where non-repudiation is required.

• G1367: Digitally sign message fragments that are required not to change during transport.

• G1369: Digitally sign all requests made to a security token service.

• G1371: Use the Digital Signature Standard for creating Digital Signatures.

• G1372: Use an X.509 Certificate to pass a Public Key.

• G1373: Encrypt messages that cross an IA boundary.

• G1374: Individually encrypt sensitive message fragments intended for different intermediaries.

• G1376: Do not encrypt key elements that are needed for correct SOAP processing.

Part 2: Traceability

Page 55

• G1378: Encrypt communication with LDAP repositories.

• G1381: Encrypt all sensitive persistent data.

• G1320: Use a minimum of 128 bits for symmetric keys.

• G1326: Ensure applications are capable of producing Secure Hash Algorithm (SHA) digests of messages to
support verification of DoD PKI signed objects.

• G1321: Enable applications to be capable of performing Public Key operations necessary to verify signatures on
DoD PKI signed objects.

• G1607: Configure routers according to National Security Agency (NSA) Router Security Configuration guidance.

• G1797: Use a minimum of 1024 bits for asymmetric keys.

Best Practices

• BP1375: Use asymmetric encryption for SOAP-based Web services.

http://www.nsa.gov/snac/routers/C4-040R-02.pdf

Part 2: Traceability

Page 56

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Information Assurance/Security > Design Tenet: Employment of
Wireless Technologies

P1248: Design Tenet: Employment of Wireless Technologies

Considerations

• All data transmissions need integrity assurances that the information has not been altered. For transmission
of sensitive or classified information, there should also be assurances that the information has not been
exposed to unauthorized users. In the case of wireless technologies, consider those assurances in
the context of lack of finite boundaries for information protection, and the possibilities of spoofing (i.e.,
unauthorized insertions of information). Many standards are being developed for the protection of wireless
networks using cryptographic means.

• Systems should encrypt all traffic when using wireless technologies using established standards.

Best Practices

• BP1880: Justify, document, and obtain a waiver for all radio terminal acquisitions that are not JTRS/SCA
compliant.

Part 2: Traceability

Page 57

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Information Assurance/Security > Other Design Tenets

P1251: Other Design Tenets

Provide boundary or perimeter protection for service-oriented architectures (SOAs) to help prevent penetration from
non-DoD external sources. The main defense security regulations, namely DoD 8500 Series and DCID 6/3 [R1247] , apply
to SOA components. Some of the regulations may not directly apply, or they may require special considerations when
applied to SOAs.

Considerations

Integrity and Confidentiality

• Encrypt requests and responses to achieve the appropriate level of confidentiality protection using protocols
such as the following:

• Secure Socket Layer (SSL) or Transport Level Security (TLS) for transport layer security

• Internet Protocol Security (IPSec) for network layer

• Secure Multi-purpose Internet Mail Extensions (S/MIME) for email traffic

• Migrate toward message-level encryption using standards such as XML-Encryption and provide message
integrity protection using standards such as XML-Digital Signature.

• Include timestamps within messages to prevent recording and playback of messages. All timestamps must
use Coordinated Universal Time (UTC), also referred to as Greenwich Mean Time (GMT) or Zulu (Z) time.

 Firewall Configurations

• Continue using firewalls and proxy servers to protect the physical boundary of clusters of equipment
supporting SOAs. Firewalls must prevent unauthorized penetrations; they require carefull programming to
reduce the inherent additional risks of SOAs.

• An example of one such risk would be allowing inbound HTTP/HTTPS access to Web-based applications.
This may allow an ill-intended SOAP message to cause an internal application buffer overflow while looking
completely benign to the firewall. To help prevent such a threat, use XML-capable firewalls as they become
available.

Intrusion Detection Systems

• Use adequate monitoring to determine anomalies or failures that can impair mission performance. Intrusion
detection systems should detect unauthorized access and penetration attempts. Use detection and protection
mechanisms to detect and prevent illicit actions automatically, and complement them with manual reporting
of anomalies or specially detected events. Enable automatic reconfiguration or recovery features only for
limited and well-defined conditions.

Intrusion Reporting

• A service-oriented architecture requires some centralization of automated reports which, when coupled with
correlation and analysis of events detected at multiple nodes, helps establish enterprise security awareness.
The scope of the environment conducting the correlation depends on the availability of software agents in
individual nodes and the availability of resources that can establish the correlation of events. The scope may
range from a few systems at a given location to all activities within a theater of operations. An even broader
analysis may occur through manual reporting at an enterprise-wide level.

Audit Events Linkage

Part 2: Traceability

Page 58

• Configure and use individual system audit mechanisms. For SOAs, complement audits with mechanisms
that correlate events in different nodes and provide network-wide forensics. Time stamping and logging of all
inter-node messages help link events and actions involving multiple nodes. Use UTC for time stamping.

Use of Audits for Attribution

• Use logging and request auditing to satisfy attribution requirements (i.e., determination of the individual
responsible for the action). This should occur at both the requestor and service provider sites.

GIG Policy Compliance

• Develop systems in accordance with the IA requirements in DoD Instruction 8500.2 [R1198] for the
appropriate Mission Assurance Category and Sensitivity Level. Systems dealing with intelligence sources
and methods must also comply with DCID 6/3. [R1247] Also leverage the guidance and technologies
described in DoD CIO Guidance and Policy Memorandum 6-8510, DoD GIG Information Assurance [R1251]

and the End-to-End Information Assurance of the GIG. [R1252]

Certification and Accreditation

• Certify and accredit all systems in accordance with DoD Instruction 8510.01, DoD Information Assurance
Certification and Accreditation Process (DIACAP). [R1291] In addition, Air Force systems should comply
with the certification and accreditation section in Air Force Instruction 33-202, Network and Computing
Security. [R1249]

Guidance

• G1301: Practice layered security.

• G1302: Validate all inputs.

• G1305: Ensure the separation of encrypted and unencrypted information.

• G1359: Bind SOAP Web service security policy assertions to the service by expressing them in the
associated WSDL file.

• G1363: Do not use clear text passwords.

• G1364: Hash all passwords using the combination of a timestamp, a nonce and the password for each message
transmission.

• G1365: Specify an expiration value for all security tokens.

• G1369: Digitally sign all requests made to a security token service.

• G1372: Use an X.509 Certificate to pass a Public Key.

• G1376: Do not encrypt key elements that are needed for correct SOAP processing.

• G1339: Practice defensive programming by checking all method arguments.

• G1340: Log all exceptional conditions.

• G1346: Audit database access.

• G1348: Log database transactions.

• G1349: Validate all input that will be part of any dynamically generated SQL.

Part 2: Traceability

Page 59

• G1622: Implement commercial off-the-shelf (COTS) software that protects against malicious code on each
operating system in the Node in accordance with the Desktop Application Security Technical Implementation
Guide (STIG).

• G1623: Implement personal firewall software on client or server hardware used for remote connectivity in
accordance with the Desktop Applications, Network and Enclave Security Technical Implementation Guides
(STIGs).

• G1624: Install anti-spyware on all client and server hardware.

• G1632: Certify and accredit Nodes with all applicable DoD Information Assurance (IA) processes.

• G1633: Host only DoD Information Assurance (IA) certified and accredited Components.

• G1634: Certify and accredit Components with all applicable DoD Information Assurance (IA) processes.

• G1662: Follow the guidance provided in the Security Technical Implementation Guide (STIG) for Domain
Name System (DNS) implementations.

• G1667: Implement Virtual Private Networks (VPNs) in accordance with the guidance provided in the Network
Security Technical Implementation Guide (STIG).

Part 2: Traceability

Page 60

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Transport

P1241: Transport

The Transport Infrastructure is a foundation for net-centric transformation in DoD. To realize the vision of the Global
Information Grid (GIG), the Assistant Secretary of Defense for Networks and Information Integration/DoD Chief
Information Officer (ASD(NII)/DoD CIO) has called for a dependable, reliable, and ubiquitous network that eliminates
stovepipes and responds to the dynamics of the operational scenario. To construct the Transport Infrastructure, DoD will
do the following:

• Follow the Internet model

• Create the GIG from smaller component building blocks

• Design with interoperability, flexibility to evolve, and simplicity in mind

• Provide a common, black-core IP network for both unclassified and encrypted classified information

Both users and providers of transport servivces must conform to established and evolving transport-related standards and
guidelines. The DoD IT Standards Registry (DISR) [R1179] is the primary source for DoD-adopted standards.

Note: See the Node Transport perspective [P1148] for further guidance.

Detailed Perspectives

• Design Tenet: IPv6

• Design Tenet: Packet Switched Infrastructure

• Design Tenet: Layering and Modularity

• Design Tenet: Transport Goal

• Design Tenet: Network Connectivity

• Design Tenet: Concurrent Transport of Information Flows

• Design Tenet: Differentiated Management of Quality-of-Service

• Design Tenet: Inter-Network Connectivity

• Design Tenet: DoD IT Standards Registry (DISR)

• Design Tenet: RF Acquisition

• Design Tenet: Joint Net-Centric Capabilities

• Design Tenet: Operations and Management of Transport and Services

http://nesipublic.spawar.navy.mil/nesix/View/P1138
http://nesipublic.spawar.navy.mil/nesix/View/P1148

Part 2: Traceability

Page 61

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Transport > Design Tenet: IPv6

P1255: Design Tenet: IPv6

In the next few years, the adoption of IPv6 throughout the DoD and other Federal Agencies will pass a major
implementation threshold. Most DoD bases and other facilities will be IPv6 capable. Most of the key components of the
technology are in place for native deployment of IPv6 or dual existence of IPv4 and IPv6.

A 9 June 2003 ASD(NII)/DoD CIO memo, Internet Protocol Version 6 (IPv6) is the first in a series of memos addressing
DoD transition to IPv6 [R1190] . The main points of the directives follow:

• The tentative original goal for IPv6 transition completion is FY08.

• DoD is conducting enterprise-wide deployment of IPv6 in a controlled, integrated and cohesive manner (see the DoD
IPv6 Transition Plan [R1254]).

• The DoD IPv6 Transition Office established within DISA is responsible for coordinating transition efforts, providing
required infrastructure, and insuring that unified solutions are used across DoD. Each Service has a Transition
Office responsible for providing technical guidance and transition governance to programs. This includes developing
transition plans (subject to coordination into a master plan by DISA), dispensing IP addresses originating from DISA,
implementing waiver policy, etc.

• A mandate, to minimize costs of transition, is that all GIG assets being developed, procured or acquired must be
IPv6 capable (in addition to maintaining interoperability with IPv4 capabilities). The DoD CIO directives contain an
outline for the "IPv6 capable" requirement, while a detailed specification is still under development.

• The transition to IPv6 should be accomplished through the normal technical refresh cycle whenever possible.

Considerations

Support IPv6 Transition

• Be able to interoperate with interfacing transport service providers who use either IPv6 or IPv4 during the
transition from IPv4. New applications should be IP version agnostic and shall employ an operating system
that supports both IPv4 and IPv6. For existing IPv4 service users, the governing authority (e.g., Component
IPv6 Transition Office) should develop and approve IPv6 migration plans.

• Transport service providers interfacing with non-transitioned networks must support both IPv6 and IPv4
during the transition from IPv4. Mechanisms proposed to allow the two protocols to coexist and inter-operate
during the transition phase from IPv4 to IPv6 include the following:

• Incorporating both IPv4 and IPv6 support in routers and computers; this is called dual stacking. This is
a preferred way to ensure the interoperability between systems during the transition period.

• Transporting IPv6 traffic through IPv4 networks by encapsulating IPv6 packet in IPv4 and vice-versa;
this is called tunneling. During the initial enabling of IPv6 in operational environments in controlled
enclaves, tunneling becomes a useful communication mechanism between the enclaves. Tunneling
should be considered only as a temporary solution.

• Placing translation gateways between IPv4 and IPv6 networks or hosts. This is the only mechanism
allowing a native IPv4-only device to communicate with IPv6-only device. The expectation is that these
devices will not be needed until the later stages of transition for dominant IPv6 devices to communicate
with some lingering native IPv4 legacy devices [R1255] .

• In all cases, IPv6 transport provider planning must be coordinated with the Service IPv6 Transition Office.

Support IPv6 IP security features for data integrity and confidentiality.

Part 2: Traceability

Page 62

• IPv6 provides improved security features in comparison to IPv4 through IPSec and mandatory support for
end-to-end security. The Service Transition Office should be able to provide guidance on utilizing any of the
IPv6 security features in the context of the service enterprise transition plan.

• Implement DoD-adopted IPv6 standards and products. The list of standards directly relevant to DoD and
approved for the use on DoD networks is maintained in the DISR [R1179] .

Guidance

• G1586: Provide a transport infrastructure for the Node that is Internet Protocol Version 6 (IPv6) capable in
accordance with the appropriate governing transition plan.

• G1587: Prepare an Internet Protocol Version 6 (IPv6) transition plan for the Node.

• G1588: Coordinate an Internet Protocol Version 6 (IPv6) transition plan for a Node with the Components that
comprise the Node.

• G1589: Address issues in the appropriate governing IPv6 transition plan as part of the Internet Protocol Version 6
(IPv6) Transition Plan for a Node.

• G1590: Include transition of all the impacted elements of the network as part of the Internet Protocol Version 6
(IPv6) Transition Plan for a Node.

• G1591: Prepare IPv6 Working Group products as part of the Internet Protocol Version 6 (IPv6) transition plan for a
Node.

• G1592: Include interoperability testing in the plan as part of the Internet Protocol Version 6 (IPv6) transition plan
for a Node.

• G1599: Support both Internet Protocol Version 4 (IPv4) and Internet Protocol Version 6 (IPv6) simultaneously
in the Node's Domain Name System (DNS) service.

• G1600: Obtain from DISA any and all Internet Protocol Version 6 (IPv6) addresses used on DoD systems in the
Node.

• G1595: Implement Domain Name System (DNS) to manage hostname/address resolution within the Node.

Best Practices

• BP1863: Make shareable data assets visible, even if they are not accessible.

• BP1870: Conform to DoD-specified data publication methods that are consistent with Global Information Grid
(GIG) enterprise and user technologies per DoD Directive 8101.1. [R1166]

• BP1705: Design DNS infrastructure in accordance with appropriate governing IPv6 Transition Office requirements.

• BP1663: Design a Domain Name System (DNS) in coordination with the appropriate governing Internet Protocol
Version 6 (IPv6) Transformation Office.

Part 2: Traceability

Page 63

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Transport > Design Tenet: Packet Switched Infrastructure

P1260: Design Tenet: Packet Switched Infrastructure

The Global Information Grid (GIG) includes a number of component networks. Each must pass data both internally
among its network members and externally to or from other GIG component systems. As such, the design of the
Internet model that applies to the development of the GIG transport infrastructure needs to be an IP datagram delivery
system. The delivery system consists of a packet-switched communications facility in which a number of distinguishable
component networks (including any networks external to this system) are connected together using routers. Technologies
such as routing standards and quality of service (QoS) mechanisms are needed to achieve the end-to-end functionality
the GIG requires. Design and apply these within the framework of packet-switched transport infrastructure.

Considerations

• Implement interface(s) to one and only one network layer protocol (Layer-3 in the OSI Reference Model)
for datagrams. This applies to transport service providers and consumers and to datagrams passed within a
component network and those destined for external networks. The fundamental goal is a single inter-network
protocol.

• GIG component system designers should consider how the component transport infrastructure will accept
externally-generated IP datagrams that are destined for hosts inside their system. This allows their system
to "attach" to the GIG. The designers should also consider how their component infrastructure will deliver
internally generated IP datagrams to hosts outside their system, and how it will serve as a transit network for
externally generated IP datagrams.

Guidance

• G1595: Implement Domain Name System (DNS) to manage hostname/address resolution within the Node.

• G1596: Use Domain Name System (DNS) Mail eXchange (MX) Record capabilities to configure electronic mail
delivery to the Node.

• G1598: Allow dynamic Domain Name System (DNS) updates to the Node's internal DNS service by local
Dynamic Host Configuration Protocol (DHCP) server(s).

• G1601: Use configurable routers to provide dynamic Internet Protocol (IP) address management using
Dynamic Host Configuration Protocol (DHCP).

• G1602: Use configurable routers to provide static Internet Protocol (IP) addresses.

• G1604: Use configurable routers to provide time synchronization services using Network Time Protocol (NTP).

• G1605: Use configurable routers to provide multicast addressing.

• G1606: Manage routers remotely from within the Node.

• G1607: Configure routers according to National Security Agency (NSA) Router Security Configuration guidance.

• G1608: Obtain the reference time for the Node time service from a globally synchronized time source.

• G1609: Arrange for a backup time source for the Node time service.

• G1610: Configure the Dynamic Host Configuration Protocol (DHCP) services to assign multicast addresses.

• G1611: Implement Internet Protocol (IP) gateways to interoperate with the Global Information Grid (GIG) until IP
is supported natively for Components that are not IP networked, such as aircraft data links (Link-16, SADL, etc.).

• G1612: Implement Internet Protocol (IP) gateways as a service.

http://www.nsa.gov/snac/routers/C4-040R-02.pdf

Part 2: Traceability

Page 64

Best Practices

• BP1864: Layer architectures to support clear boundaries between data management, presentation, and business
logic functionality.

• BP1877: Align end-to-end interoperable management of QoS with external networks.

• BP1878: Quantitative measures of QoS requirements should be supportable.

• BP1879: The program, project or initiative should align with the DoD Qos/CoS Working Group Roadmap.

• BP1874: Develop methods to forward IP datagrams from external networks.

• BP1876: Provide a priority-based differentiated management of quality-of-service for traffic based on class of
user, application, or mission.

Part 2: Traceability

Page 65

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Transport > Design Tenet: Layering and Modularity

P1261: Design Tenet: Layering and Modularity

Change is probably the only inviolable characteristic of the commercial Internet model. Moreover, change occurs at
different rates in different elements of the network/protocol stack. Design the Global Information Grid (GIG) transport
infrastructure to accommodate that change. The most effective way to allow differential change in a system is through
modular, layered design.

Although market forces and commercial practice sometimes have deprecated the International Organization for
Standardization (ISO) Open System Interconnection (OSI) Model, it still provides excellent guidelines for implementing a
layered design. These guidelines still apply to the development of the GIG transport infrastructure.

In a layered design, each layer is independent and adds value to the set of services offered by lower layers. The services
provided to and from a layer are well defined; however, the precise approach for providing these services is not specified.
ISO defined a number of principles to consider when developing a layered design and applied those principles to develop
the seven-layer OSI Model.

While a seven-layer approach may not be the solution for the GIG transport infrastructure, GIG component
system designers should consider the principles ISO defined to facilitate interoperability and to reduce technology
interdependencies that add to system complexity. The following considerations include a subset of these principles that
apply to the GIG transport infrastructure.

Considerations

Define Layer Boundaries and Interfaces

• Implement one or more interfaces to the defined transport service delivery point(s) or interface boundaries,
where the services description can minimize the number of interactions across the interface boundary(ies).
The networks should provide the interface boundary definition(s). To the maximum extent possible,
functionality implemented within each OSI layer of the transport service implementation should only interface
with the adjacent lower layer via defined interfaces. The goal is to minimize the cross-layer physical and
functional interdependencies to facilitate GIG transport infrastructure growth and interoperability.

Ensure Functions are Modular and Separable

• Create a layer of easily localized functions. These functions should enable developers to totally redesign the
layer and its protocols to take advantage of new advances in architectural, hardware, or software technology
without changing the services and interfaces with the adjacent layers.

• Identify all instances in the transport infrastructure where a logical or physical coupling or dependency exists
between different layers of the protocol stack. The goal is to minimize the cross-layer physical and functional
interdependencies to facilitate GIG transport infrastructure growth and interoperability.

Minimize Complexity of Layered Implementation

• Keep the number of layers within networks small enough to reduce the complexity of describing, integrating,
and maintaining the layers.

Guidance

• G1301: Practice layered security.

Best Practices

• BP1876: Provide a priority-based differentiated management of quality-of-service for traffic based on class of
user, application, or mission.

Part 2: Traceability

Page 66

• BP1790: Stipulate that the Offeror is to describe how the proposed technical solution reuses services from other
systems or demonstrates composeability and extensibility by building from existing reusable components and/or
services.

• BP1829: Use the Data Distribution Service (DDS) OWNERSHIP Quality of Service (QoS) kind set to
EXCLUSIVE when multiple DataWriters cannot write each unique data-object within a DDS Topic simultaneously.

Part 2: Traceability

Page 67

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Transport > Design Tenet: Transport Goal

P1262: Design Tenet: Transport Goal

A design goal of the Global Information Grid (GIG) is network convergence with voice, video, and other multimedia
traffic packetized and transported along with data traffic over a common Internet Protocol (IP) network. Another transport
goal is the convergence of encrypted classified information flows on a common black IP network. This corresponds to the
direction of commercial industry, where telecommunications providers and corporate telephony are migrating to IP.
A primary benefit of convergence is that it eliminates the expensive hardware and complexity of separate, dedicated
networks that support serial-based traffic (e.g., voice and video teleconferencing). Other benefits include greater efficiency
of bandwidth and the ability to introduce new features based on converged services.

Considerations

Support Interfaces with Converged Traffic Networks

• Implement interfaces to, or transition to, a transport infrastructure supporting full convergence of traffic on a
single IP inter-network, using DoD-adopted standards and DISA/JITC-certified (voice) solution sets.

• Identify and minimize all instances where performance standards cannot be met using a converged transport
infrastructure (e.g., where dedicated, single-traffic-type transport service is required). The goal is to minimize
cross-layer physical and functional interdependencies to facilitate GIG transport infrastructure growth and
interoperability.

• Voice, video, and other multimedia traffic have relatively strict delivery requirements with regard to latency
and jitter. This requires networks to support the QoS features identified in the Design Tenet: Differentiated
Management of Quality-of-Service.

• The DoD-adopted set of standards appears in the DoD IT Standards Registry (DISR) [R1179] . DISR
specifies standards for Voice over IP (VoIP) and video teleconferencing (VTC) based on the International
Telecommunication Union (ITU) standard H.323.

• Voice over IP (VoIP) refers to a set of standards and technologies that allow transmission of voice data over
IP networks. The industry has embraced two different sets of standards:

• ITU H.323 is the more mature and complete set of standards, which encapsulates Integrated Services
Digital Network (ISDN) call signaling over an IP-based network.

• A more recent set of standards, developed by the Internet Engineering Task Force (IETF), is based
on the Session Initiation Protocol (SIP). The SIP standard concerns simple call placement and is
designed to be easily expandable.

• Since there are currently two options for VoIP, the DoD plans to select a set of mandated standards within
the DISR.

• Video teleconferencing over IP is based on ITU H.323. This is an umbrella standard of ITU recommendations
that address audio, video, signaling, and control for packet-switched networks.

Guidance

• G1585: Provide a transport infrastructure for the Node that implements Global Information Grid (GIG)
Information Assurance (IA) boundary protections.

• G1584: Provide a transport infrastructure that is shared among Components within the Node.

• G1586: Provide a transport infrastructure for the Node that is Internet Protocol Version 6 (IPv6) capable in
accordance with the appropriate governing transition plan.

Part 2: Traceability

Page 68

Best Practices

• BP1864: Layer architectures to support clear boundaries between data management, presentation, and business
logic functionality.

• BP1875: Describe the process and protocols used to provide concurrent traffic from multiple security domains on
a single IP internetwork.

• BP1877: Align end-to-end interoperable management of QoS with external networks.

• BP1878: Quantitative measures of QoS requirements should be supportable.

• BP1879: The program, project or initiative should align with the DoD Qos/CoS Working Group Roadmap.

• BP1594: Examine the use of Transmission Control Protocol (TCP) extentions and other transport protocols that
have been designed to mitigate risk for high bandwidth, high latency satellite communications.

• BP1876: Provide a priority-based differentiated management of quality-of-service for traffic based on class of
user, application, or mission.

Part 2: Traceability

Page 69

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Transport > Design Tenet: Network Connectivity

P1263: Design Tenet: Network Connectivity

Provide network connectivity to all end points, such as wide- and local-area networks, and direct connections to mobile
end users. This perspective addresses the Open System Interconnection (OSI) Model Layer-2 or terminal-to-network
interfaces.

Considerations

Manage Scalability and Complexity

• Quantitatively evaluate scalability before formulating a final design. The evaluation should identify any
transport infrastructure design drivers regarding the number of hosts that need to be supported and/or
number of networks that are required to support the technologies chosen for the specific transport service or
infrastructrure use.

• One way to reduce complexity is to use a minimal set of standards/protocols in developing the Global
Information Grid (GIG) transport infrastructure. This implies that any selected standard/protocol has the
capacity to serve as large a percentage of the GIG as possible. Component systems of the GIG should select
standards/protocols that can scale to the enterprise. GIG component system designers should evaluate their
transport infrastructure design to identify any instances where different technology/protocols perform the
same function (e.g., internal routing).

Optimize Use of COTS Products

• Use open, commercial-off-the-shelf (COTS) products as much as possible. Government-off-the-shelf
(GOTS) and/or vendor-unique products may lead to interoperability and evolvability issues. Use them only
when there is an overarching, unique, DoD requirement driving that selection.

• Document the justification for the use of any protocols, standards, etc., that are not included the DoD IT
Standards Registry and/or could not be purchased off-the-shelf from a commercial networking vendor.

Guidance

• G1605: Use configurable routers to provide multicast addressing.

• G1606: Manage routers remotely from within the Node.

• G1602: Use configurable routers to provide static Internet Protocol (IP) addresses.

• G1601: Use configurable routers to provide dynamic Internet Protocol (IP) address management using
Dynamic Host Configuration Protocol (DHCP).

• G1604: Use configurable routers to provide time synchronization services using Network Time Protocol (NTP).

• G1609: Arrange for a backup time source for the Node time service.

• G1607: Configure routers according to National Security Agency (NSA) Router Security Configuration guidance.

• G1330: Ensure applications are capable of checking the status of Certificates using a Certificate Revocation
List (CRL) if not able to use the Online Certificate Status Protocol (OCSP).

• G1610: Configure the Dynamic Host Configuration Protocol (DHCP) services to assign multicast addresses.

• G1608: Obtain the reference time for the Node time service from a globally synchronized time source.

http://www.nsa.gov/snac/routers/C4-040R-02.pdf

Part 2: Traceability

Page 70

• G1582: In Node Enterprise Service schedules, include version numbers of standard Enterprise Services
interfaces being implemented.

Best Practices

• BP1830: Use the Data Distribution Service (DDS) Content Profile to tailor subscription message data.

• BP1651: Do not implement server side CES functionality for Components.

• BP1845: Consider key enterprise-level concerns when planning and executing a migration to net-centricity and
SOA.

Part 2: Traceability

Page 71

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Transport > Design Tenet: Concurrent Transport of Information
Flows

P1264: Design Tenet: Concurrent Transport of Information Flows

This tenet addresses the use of Inline Network Encryptors (INEs) that allow all security domains to be "known" globally
to the Open System Interconnection (OSI) Model Layer-3 encrypted backbone network. This is a fundamental shift from
current link-by-link encryption. Utilizing a Black Core network should provide a significantly streamlined communications
infrastructure that also makes more efficient use of the available bandwidth through the invocation ofquality-of-service/
class-of-service (QoS/CoS) based IP datagram multiplexing.

High Assurance Internet Protocol Encryptor (HAIPE) devices are among the critical technologies that should enable
the Black Core IP-network vision to become a reality. However, a number of technical challenges must be solved
before the vision can be realized across all functional domains and Communities of Interest (COIs). These include the
following:

• Support for IP-based QoS/CoS

• Support for dynamic unicast IP routing

• Support for dynamic multicast IP routing

• Support for mobility

• Support for simultaneous IPv6 and IPv4 operation

Considerations

Implement INE Standards and Products to Support Traffic Convergence

• Government-off-the-Shelf (GOTS) and/or vendor-unique products may lead to interoperability and evolvability
issues. Use them only when there is an overarching, unique, DoD requirement driving that selection.

• Implement DoD-adopted INE standards and products, when available, to support traffic convergence from
multiple security domains on a single IP inter-network. Currently, DoD is engaged in IETF-standards working
groups and vendor communities to accelerate development of new standards in the areas of security, tactical
communications, QoS, and reliable networking. Some standards have been adopted for QoS and HAIPE. A
product list is in development for infrastructure, hardware, software, and other categories of IPv6 products.

Document Approach to Information Infrastructure with Black Core

• GOTS and/or vendor-unique products may lead to interoperability and evolvability issues. Use them only
when there is an overarching, unique, DoD requirement driving that selection.

• Document the approach to providing an information infrastructure with a Black Core.

Guidance

• G1607: Configure routers according to National Security Agency (NSA) Router Security Configuration guidance.

Best Practices

• BP1875: Describe the process and protocols used to provide concurrent traffic from multiple security domains on
a single IP internetwork.

• BP1879: The program, project or initiative should align with the DoD Qos/CoS Working Group Roadmap.

http://nesipublic.spawar.navy.mil/nesix/View/P1152
http://www.nsa.gov/snac/routers/C4-040R-02.pdf

Part 2: Traceability

Page 72

• BP1880: Justify, document, and obtain a waiver for all radio terminal acquisitions that are not JTRS/SCA
compliant.

• BP1670: Monitor Black Core implementation issues and prepare a plan for local implementation in coordination
with system programs fielded within the Node.

• BP1671: Consider Black Core transition whenever there is a significant Node network design or configuration
decision to make in an effort to avoid costly downstream changes caused by Black Core transition.

Part 2: Traceability

Page 73

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Transport > Design Tenet: Differentiated Management of Quality-
of-Service

P1265: Design Tenet: Differentiated Management of Quality-of-
Service

Some applications in the Global Information Grid (GIG) require firm service guarantees, while others operate correctly if
they receive services that are differentiated with respect to one or more performance characteristics.

Differentiated Services or DiffServ aggregates flows into coarse classes and then treats the packets in these classes
differentially. Due to this aggregation, and the resulting absence of a need to consider individual flows beyond the edges
of an internet, DiffServ exhibits good scaling properties. However, in the absence of additional mechanisms, DiffServ
provides only preferential, differentiated levels of service and not guarantees.

Considerations

Support Quality of Service (QoS) and Class of Service (CoS)

• Interoperate with interfacing transport service providers who use standardized DoD QoS/CoS in accordance
with the DoD QoS/CoS Roadmap. As the interfacing networks are transitioned to standardized QoS/CoS,
plan to migrate to maintain interoperability.

• Prioritize traffic based on class of user, application, or mission. Lower priority data flows should be preempted
if a higher priority flow is initiated and insufficient resources exist to carry both flows simultaneously. This
capability, referred to as Class of Service (CoS) support, corresponds approximately to the notion of Multi-
Level Priority and Preemption (MLPP). The GIG and its components should support both QoS and CoS in
accordance with the DoD QoS/CoS Roadmap and policies

Guidance

• G1771: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe the
behavior of a publisher.

• G1801: Explicitly define a Topic Quality of Service (QoS) for each Data Distribution Service (DDS) Topic within
a DDS Domain.

• G1803: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe real-
time messaging criteria for Publishers.

• G1804: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe
DataWriter.

• G1805: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe the
behavior of the Subscriber.

• G1806: Explicitly define the Request-Offered Data Distribution Service (DDS) Quality of Service (QoS) Policies
to describe the behavior of the DataReader.

• G1808: Handle all Data Distribution Service (DDS) Quality of Service (QoS) contract violations using one of the
Subscriber access APIs.

Best Practices

• BP1876: Provide a priority-based differentiated management of quality-of-service for traffic based on class of
user, application, or mission.

• BP1877: Align end-to-end interoperable management of QoS with external networks.

Part 2: Traceability

Page 74

• BP1878: Quantitative measures of QoS requirements should be supportable.

• BP1879: The program, project or initiative should align with the DoD Qos/CoS Working Group Roadmap.

Part 2: Traceability

Page 75

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Transport > Design Tenet: Inter-Network Connectivity

P1266: Design Tenet: Inter-Network Connectivity

A fundamental tenet of the commercial Internet model is that the complexity of the Internet belongs at the edges. Certain
required end-to-end functions can only be performed correctly by the end systems themselves. Any network, however
carefully designed, will be subject to failures of transmission at some statistically determined rate.

The best way to cope with this is to accept it and give responsibility for the integrity of communication to the end systems.
This principle drives the complexity of the network to the edge and limits state information held inside the network. This
increases the robustness of end-to-end communications since application state can now only be destroyed by a failure of
the end systems.

Many issues need to be resolved to mature the guidance for this tenet, especially for transport users whose data traverse
different media with different performance characteristics. In some situations it may not be desirable to follow this design
tenet.

For example, the use of TCP proxies, which may be required to achieve adequate performance across satellite assets,
runs counter to this tenet. The proxy (part of the network and not an end system) maintains state information on the
TCP session between two end-user systems, but it cannot guarantee that the function that TCP is performing is being
accomplished.

Avoid implementing "intelligence" within the network whenever possible.

Considerations

Support Inter-network Connectivity Using DoD-Adopted Standards

• Support inter-network connectivity using DoD-adopted standard protocols contained in the DoD IT
Standards Registry (DISR) [R1179] , such as BGP4. Any protocols or standards that are not included in the
DISR, such as performance-enhancing proxies, should be documented and justified against the resulting
impact to GIG component system interoperability.

Guidance

• G1601: Use configurable routers to provide dynamic Internet Protocol (IP) address management using
Dynamic Host Configuration Protocol (DHCP).

• G1602: Use configurable routers to provide static Internet Protocol (IP) addresses.

• G1604: Use configurable routers to provide time synchronization services using Network Time Protocol (NTP).

• G1605: Use configurable routers to provide multicast addressing.

• G1606: Manage routers remotely from within the Node.

• G1607: Configure routers according to National Security Agency (NSA) Router Security Configuration guidance.

• G1608: Obtain the reference time for the Node time service from a globally synchronized time source.

• G1609: Arrange for a backup time source for the Node time service.

• G1610: Configure the Dynamic Host Configuration Protocol (DHCP) services to assign multicast addresses.

• G1623: Implement personal firewall software on client or server hardware used for remote connectivity in
accordance with the Desktop Applications, Network and Enclave Security Technical Implementation Guides
(STIGs).

http://www.nsa.gov/snac/routers/C4-040R-02.pdf

Part 2: Traceability

Page 76

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Transport > Design Tenet: Joint Technical Architecture [now
DISR]

P1267: Design Tenet: Joint Technical Architecture [now DISR]

Note: This topic is "Design Tenet: Joint Technical Architecture" in the Net-Centric Checklist v2.1.3 of 12 May
2004. The DISR Baseline Release 04-2.0 of 22 December 2004 replaced the JTA so this perspective refers to
the DISR rather than the JTA.

DoD-approved standards and protocols related to net-centricity are in the DoD Information Technology (IT) Standards
Registry (DISR). [R1179] Programs, projects or initiatives should support computing infrastructure that is compliant
with the net-centric interoperability standards in the DISR. NESI provides implementation guidance and best practices
for DoD sanctioned standards and protocols. However, other standards are often useful and when a program (or
project or initiative) uses them, the program manager needs to be able to justify this use. Many of the technologies and
implementation specifics associated with the ASD(NII) Net-Centric Checklist Tenets are still in development and have not
yet reached maturity.

Considerations

• Justify and document all standards that are not included in the DoD Information Technology (IT) Standards
Registry (DISR), [R1179] especially those that impact transport service infrastructure design.

Best Practices

• BP1712: Register developed mappings in the DoD Metadata Registry.

• BP1875: Describe the process and protocols used to provide concurrent traffic from multiple security domains on
a single IP internetwork.

Part 2: Traceability

Page 77

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Transport > Design Tenet: RF Acquisition

P1269: Design Tenet: RF Acquisition

Considerations

JTRS/SCA Compliance

• Justify, document, and obtain a waiver for all radio terminal acquisitions that are not Joint Tactical Radio
System (JTRS) /Software Communications Architecture (SCA) compliant and coordinate with the Office
of the Secretary of Defense (OSD) and the JTRS Joint Program Executive Office (JPEO); the following
references apply: [R1240] and [R1241] .

Minimize RF Bandwidth Requirements

• Use appropriate transmit protocols, compression standards, and other techniques when interfacing radio
frequency (RF) networks to the Global Information Grid (GIG) environment. The RF environment, with
its much more constrained and error prone propagation environment, requires techniques that minimize
bandwidth requirements.

Guidance

• G1714: Develop Software Communications Architecture (SCA) applications to use only Operating
Environment functionality defined by the SCA Application Environment Profile.

• G1713: Use an Operating Environment (OE) for all SCA applications that includes middleware that, at a
minimum, provides the services and capabilities specified by Minimum CORBA Specification version 1.0.

Best Practices

• BP1715: Design SCA log services according to the OMG Lightweight Log Service Specification.

Part 2: Traceability

Page 78

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Transport > Design Tenet: Joint Net-Centric Capabilities

P1274: Design Tenet: Joint Net-Centric Capabilities

The Assistant Secretary of Defense for Networks and Information Integration/Department of Defense Chief Information
Officer (ASD[NII]/DoD CIO) issued a 15 July 2003 memorandum, Joint Net-Centric Capabilities, that identifies a
number of key C4ISR programs for integrating into the Global Information Grid (GIG):

• All Space Terminal acquisitions

• All Intelligence, Surveillance, and Reconnaissance (ISR) programs

• Teleport

• Warfighter Information Network-Tactical (WIN-T)

• All radio and data link applications

• Global Command and Control System (GCCS, Joint and Service variants)

• Crypto Modernization

• Distributed Common Ground Systems (DCGS)

• All C2 programs

• Deployable Joint Command and Control (DJC2)

• High Assurance Internet Protocol Encryption (HAIPE)

• Future Combat Systems (FCS)

• Programs under the FORCEnet umbrella

The memo highlights programs that are required to develop transition plans for integrating transport components with the
following GIG joint net-centric capabilities:

• Internet Protocol version 6 (IPv6)

• Net-Centric Enterprise Services (NCES)

• Joint Tactical Radio System (JTRS)/Software Communications Architecture (SCA)

• Global Information Grid Bandwidth Expansion (GIG-BE)

• Transformational Communications Satellite/Advanced Wideband System

• End-to-end information assurance

The ASD(NII) Net-Centric Checklist [R1177] also highlights the need for the programs to include in transition plans the use
of guard technologies, and standards and protocols for connectivity with allied and coalition partners.

Considerations

Employ NCOW RM

Part 2: Traceability

Page 79

• Use the Net-Centric Operations and Warfare Reference Model (NCOW RM) [R1176] to guide implementation
of Joint net-centric capabilities. The reference model provides context for the types of architectures and
computing infrastructures that the GIG transport systems and management functions must support.

• Use the NCOW RM to define the architectures of Joint net-centric capabilities. The GIG NetOps Architecture
from GIG Version 1.0 was a central component used to develop NCOW RM. The reference model provides
context for the types of architectures and computing infrastructures that the GIG transport systems and
management functions must support.

Guidance

• G1629: Identify which Net-Centric Enterprise Services (NCES) capabilities the Node requires during
deployment.

• G1576: Provide an environment to support the development, build, integration, and test of net-centric capabilities.

Best Practices

• BP1866: Coordinate with end users to develop interoperable materiel in support of high-value mission capability.

• BP1880: Justify, document, and obtain a waiver for all radio terminal acquisitions that are not JTRS/SCA
compliant.

• BP1681: Make Component services metrics visible and accessible as part of the service registration and updated
periodically.

• BP1840: Identify opportunities to apply the principles of net-centricity and SOA throughout the course of the
program.

• BP1661: Engage with the Net-Centric Enterprise Services (NCES) program office to explore approaches for
mobile use of the Core Enterprise Services (CES) services in mobile Nodes that rely on Transmission Control
Protocol/Internet Protocol (TCP/IP) for inter-node communication.

• BP1837: Update the net-centric and SOA migration plan in an iterative manner as the program gains migration
experience and conditions change.

• BP1400: Programs will use authoritative metadata established by the Joint Mission Threads (JMTs) when
available.

• BP1686: Align Node interfaces to Components for directory services with the guidance being provided by the
Joint Enterprise Directory Services Working Group (JEDIWG) and sub-working groups, including such guidance
as naming conventions, federation, and synchronization.

Part 2: Traceability

Page 80

Part 2: Traceability > ASD(NII): Net-Centric Guidance > Transport > Design Tenet: Operations and Management of
Transport and Services

P1277: Design Tenet: Operations and Management of Transport
and Services

This tenet encompasses three equally important principles of Network Operations (NetOps):

• Develop manageable systems

• Use non-proprietary implementations

• Use accepted industry standards

NetOps:

• Is a coordinated, comprehensive set of operational concepts and structure that fuses Systems and Network
Management, Information Assurance/Computer Network Defense, and Content Staging/Information Dissemination
Management into a single integrated operational construct

• Is an end-to-end capability that represents the integrated doctrine, force structure, and tactics, techniques, and
procedures (TTP) needed to manage and direct the net-centric operations of the Global Information Grid (GIG)

• Encompasses all activities directly associated with the net-centric management and protection of GIG computing
(including applications and systems), communications, and information assurance assets across the continuum of
military operations

• Actively integrates those capabilities with the goal of end-to-end, assured network availability, information delivery,
and information protect

Considerations

Develop Manageable Systems

• Build transport communications and network systems, services, sub-systems, sub-services, components,
devices, and elements from the ground up to be "manageable." They should also have the appropriate
functional management capabilities.

• Manage transport communications and network services and systems proactively and operate to specific
levels of service. These service levels are documented and published in Operational or Service Level
Agreements (OLA/SLAs).

• Fully integrate management solutions for transport systems and services with management solutions to
ensure that the GIG is holistically operated and managed to support operational warfighter requirements.
Operational management solutions should fully address all specific management functional areas; e.g., fault,
configuration, accounting, performance, and security management.

Use Non-Proprietary Implementations

• Base operational management capabilities and solutions on non-proprietary implementations of industry
accepted standards. An example is the Simple Network Management Protocol (SNMP) for IP-based
networks.

• Critical transport systems, subsystems, component, and elements need to be able to monitor securely, detect
changes in, and report the following:

• Basic up/down operational status

Part 2: Traceability

Page 81

• Performance information

• Operational configuration

• Security status

• Management interfaces should be non-proprietary. They must be accessible to a wide variety of
management products and solutions via open-standards-based interfaces. The interfaces should not require
hard-coding to obtain operational status information about a particular system.

• To support the development of NetOps Situational Awareness capabilities, ensure that operational
management solutions can share operational status and other types of management information with
management solutions operated by other types of service providers. The exchange must use non-proprietary
standards-based interfaces. While this could be as simple as offering a browser-accessible Web interface
using HTTP or HTTPS, management product vendors are beginning to implement Web services interfaces
that use SOAP to share information between management systems.

Use Accepted Industry Standards and Emerging NetOps Concepts

• Operational concepts, architectures, processes, and procedures used by transport communications and
network providers must incorporate emerging NetOps concepts. They should be based on accepted industry
standards.

• Take an active role in the growing NetOps community. Develop the operational policies, processes, and
procedures that enhance the flow of information between different management domains. This will ensure
proactive problem detection, isolation, and resolution with minimum impact on the user. [R1262]

• To support this goal, adopt and implement operational policies, processes, and procedures based on
internationally accepted de facto Telecommunication Service Provider and IT Service Management (ITSM)
standards.

Support Standardized DoD Service-Oriented Environment

• Employ DoD-adopted standards for implementing and using transport infrastructure in the GIG-ES Enterprise
Service Management (ESM)/NetOps service-oriented environment, rather than a domain or system-oriented
environment.

• A Working Group established early in CY2003 to help develop DoD-level policy for operating in a service-
oriented environment is co-chaired by ASD(NII)/DoD CIO and DISA. This group has enjoyed wide
participation and representation from across the Services as well as from key enterprise programs. The
main focus of this group has been to formulate initial ESM/NetOps requirements for GIG-ES and for the Net-
Centric Enterprise Services (NCES) Program. The group also identified DoD-level policy areas that may
need to be revised to support net-centric operations in a service-oriented architecture (SOA). In addition,
the group has collaborated with the NetOps CONOPS group to broaden the current transport- and network-
centric approach to one that is more holistic and consistent in monitoring, managing, and controlling systems,
services, and applications, in addition to transport systems and networks.

Employ DoD-Adopted Standards to Support Cross-System and Domain Management

• Employ DoD-adopted standards for operating and managing transport services. This includes interaction with
counterparts in other networks or management domains, such as system or application managers.

• Specify interfaces and/or standards for the following:

• Sharing operational status and performance information

• Collecting and disseminating service management information

• Selecting the format in which it is made available (e.g., SNMP, XML, CIM, SOAP)

Part 2: Traceability

Page 82

Note: Volume 1 of the DISR [R1179] identifies SNMP and XML as mandated standards and CIM as an
emerging standard; the NCOW RM [R1179] identifies CIM as a target standard.

Plan for Coalition Interoperability

• Plan for operations and management of transport services. This includes interacting with counterparts in
other networks or management domains used by coalition partners. Most recent conflicts have involved
not only U.S. forces, but forces from allies and coalition partners. In the future, U.S. information and
communications systems must support interoperability with these groups. There are various ways to achieve
interoperability including the following:

• Acquisition of common systems

• Development of diverse but interoperable systems

• Adherence to standards and commercial best practices

Part 2: Traceability

Page 83

Part 2: Traceability > Open Technology Development

P1307: Open Technology Development

The Deputy Under Secretary of Defense (DUSD) for Advanced Systems and Concepts (AS&C) chartered the
development of the OSD Open Technology Development Roadmap. [R1288] The roadmap proposes that DoD adopt
generally understood OTD practices regarding open source code access, open interfaces and systems, and collaborative
development methodologies. The goal is to keep pace with technology advances and changing requirements in an
efficient manner.

There are five aspects associated with OTD:

• Open Architecture

• Open Standards

• Open Development Collaboration

• Open Source (Software)

• Open Systems

Part 2: Traceability

Page 84

Part 2: Traceability > Open Technology Development > Open Architecture

P1309: Open Architecture

Open Architecture

Open Architecture (OA), according to Open Architecture Principles and Guidelines, [R1288] is a pattern of
nonfunctional requirements that contribute to the ability to create, deploy and manage OA systems. In some domains, e.g.
systems engineering, OA considerations would apply to both hardware and software components. An Open Architecture
employs open standards for key interfaces within a system [Open Systems Joint Task Force]. Open Architecture is the
confluence of business and technical practices yielding modular, interoperable systems that adhere to open standards
with published interfaces. This approach significantly increases opportunities for innovation and competition, enables
reuse of components, facilitates rapid technology insertion, and reduces maintenance constraints. OA delivers increased
warfighting capabilities in a shorter time at reduced cost [Naval Open Architecture Rhumb Lines; Open Architecture 12
Dec 06.pdf].

For an architecture to be "open" it must meet all of the following criteria.

Note: Specific terms are defined in Sections 2.1.2 through 2.1.7 of the Open Architecture Principles and
Guidelines; links to applicable NESI Perspectives are in brackets following each question.

• Modular

• Is the architecture partitioned into discrete, self-contained modules of functionality?

• [NESI on Implementing a Component-Based Architecture]

• Do each of the modules have well defined, published interfaces?

• [NESI on Public Interface Design]

• [NESI on Standard Interface Documentation]

• [NESI on how to Publish and Insulate Public Interfaces]

• [NESI on Key Interface Profiles (KIPs)]

• Are the interface definitions designed for ease of understanding by third-party architects?

• [NESI on Exposing Functionality through Non-Standard Interfaces]

• Interoperable

• Do the architecture modules enable the useful exchange of data and information with other systems outside of
the architecture?

• [NESI on Net-Centric Information Engineering]

• Does each architecture module provide for the execution of its capabilities in response to requests coming from
outside the respective module?

• [NESI on the Software Communication Architecture (SCA)]

• [NESI on Node Application Enterprise Services]

• [NESI on Phases of SOA Adoption]

http://www.acq.osd.mil/osjtf/whatisos.html
https://acc.dau.mil/CommunityBrowser.aspx?id=156965&lang=en-US
http://nesipublic.spawar.navy.mil/nesix/View/P1034
http://nesipublic.spawar.navy.mil/nesix/View/P1060
http://nesipublic.spawar.navy.mil/nesix/View/P1069
http://nesipublic.spawar.navy.mil/nesix/View/P1062
http://nesipublic.spawar.navy.mil/nesix/View/P1173
http://nesipublic.spawar.navy.mil/nesix/View/P1218
http://nesipublic.spawar.navy.mil/nesix/View/P1133
http://nesipublic.spawar.navy.mil/nesix/View/P1087
http://nesipublic.spawar.navy.mil/nesix/View/P1164
http://nesipublic.spawar.navy.mil/nesix/View/P1238

Part 2: Traceability

Page 85

• Does each architecture module provide for the request for execution of capabilities that are instantiated outside
of the respective module?

• [NESI on Common Enterprise Services Definitions and Status]

• Extensible

• Is the architecture designed with points of integration (e.g. module interfaces) that allow for future modules and
capabilities to be added to the implementation, without requiring a modification to the architecture or existing
implementation?

• [NESI on Implementing Component-Based Architectures]

• Reuseable

• Is the architecture designed with modules that can be used in multiple contexts to provide similar capabilities in
those different contexts?

• [NESI Pattern for Re-Implementation]

• [NESI Contracting Guidance for Reuse]

• Composable

• Is the architecture comprised of modules that can be selected and assembled in various combinations to
satisfy specific user requirements?

• [NESI on Implementing a Component-Based Architecture]

• Maintainable

• Can the architecture's modules be maintained (revised, repaired, and replaced) without impacting the
prescribed requirements (performance, availability, etc.) of the architecture's other modules?

• [NESI on Management Issues for Exposed Functionality]

• [NESI on Maintaining the Internal Component Environment]

http://nesipublic.spawar.navy.mil/nesix/View/P1166
http://nesipublic.spawar.navy.mil/nesix/View/P1034
http://nesipublic.spawar.navy.mil/nesix/View/P1220
http://nesipublic.spawar.navy.mil/nesix/View/P1123
http://nesipublic.spawar.navy.mil/nesix/View/P1034
http://nesipublic.spawar.navy.mil/nesix/View/P1227
http://nesipublic.spawar.navy.mil/nesix/View/P1134

Part 2: Traceability

Page 86

Part 2: Traceability > Open Technology Development > Open Standards

P1310: Open Standards

The DoD Open Systems Joint Task Force defines Open Standards as standards that are widely used, consensus-based,
published, and maintained by recognized standards organizations [OSJTF Terms & Definitions]. For a standard to be
"open," it must meet the follow criteria:

• Is the standard widely-used?

• Is the standard consensus-based (developed using an open consortium approach)?

• Is the standard maintained and recognized by one or more recognized standards organizations, such as the Internet
Society (ISOC), the Object Management Group (OMG), the Organization for the Advancement of Structured
Information Standards (OASIS), or the World Wide Web Consortium (W3C)?

• Does each standard include all details necessary for interoperable implementation?

• Is the standard freely and publicly available under royalty-free terms?

• Are all patents to the implementation of the standard licensed under royalty-free terms for unrestricted use or
covered by a promise of non-assertion when practiced by open source software?

• Is the standard free of all requirements for execution of a license agreement, non-disclosure agreement, grant, click-
through arrangement, or any form of paperwork, to deploy conforming implementations of the standard?

• Is the standard free of all requirements for other technology that fails to meet this "open standard" criteria?

http://www.acq.osd.mil/osjtf/termsdef.html
http://www.isoc.org/standards/
http://www.omg.com/
http://www.oasis-open.org/
http://www.w3.org/

Part 2: Traceability

Page 87

Part 2: Traceability > Open Technology Development > Open Development Collaboration

P1311: Open Development Collaboration

Open Development Collaboration is a team-based process to design, acquire, implement, deploy, and utilize a system.
Include appropriately qualified subject matter experts from both government and industry, and include representatives of
all stakeholders involved in the acquisition, deployment, and utilization of the system. Document the team's collaboration,
correspondence, and decisions using an on-line mechanism (e.g. Web-based forum) that provides persistence and read/
write access to all team members; the government should retain all rights to the content placed in the on-line mechanism.
The government may restrict access to this content to members of the respective team, as may be deemed necessary by
the government representatives. The development collaboration is "open" if it meets all of the following criteria:

• Does the collaboration cover all aspects of the development lifecycle including design, acquisition, implementation,
deployment, and utilization?

• Is the team that is collaborating comprised of appropriately qualified subject matter experts from both government
and industry?

• Does the team that is collaborating include representatives of all stakeholders involved in the acquisition,
deployment, and utilization of the system?

• Are the team's collaboration, correspondence, and decisions persistently documented using an on-line mechanism
(such as forums)?

• Is that content/documentation freely accessible to all team members?

• Do all team members have read/write access to that documentation (and is the integrity of each team member's
input perserved)?

• Does the government have full rights to that content?

Examples of Open Development Collaboration

• Source Forge - example of an open development collaboration site on the Internet

• NESI Collaboration Site - example of a development collaboration site with controlled access for authorized
government users, contractors, and vendors

• TBMCS's DEVnet - example of a development collaboration site with controlled access for authorized government
users, contractors, and vendors

http://www.sourceforge.net/
https://nesi.spawar.navy.mil/
https://tbmcs-devnet.com/

Part 2: Traceability

Page 88

Part 2: Traceability > Open Technology Development > Open Source (Software)

P1312: Open Source (Software)

The principle of "Open Source" does not just mean access to the source code is freely and publicly available. The Open
Source Initiative Open Source Definition includes ten criteria which form the basis of the following questions (note that
links to applicable NESI Perspectives are in brackets after some of the questions). For software to meet the definition of
"open source" it must satisfy the ten criteria.

• Is the license free of all restrictions (e.g., all royalties and other such fees for sale or use) preventing the DoD from
selling or giving away the software as a component of an aggregate software distribution containing programs from
several different sources?

• [NESI Contracting Guidance for Acquisition]

• [NESI Contracting Guidance for Reuse]

• [NESI Guidance for Representations, Certifications, and other Statements of Offerors]

• Does the program include source code and allow for distribution of that source code in textual form as well as in
compiled form?

• [NESI Guidance for Standard Interface Documentation]

• [NESI Guidance for RFP Section J - List of Attachments]

• Does the license allow for modifications and derived works, and allow those changes to be distributed under the
same terms as the license of the original software?

• Does the license protect the integrity of the author's original source code? For example,

• requiring derived works to carry a different name or version number from the original software?

• requiring that the original source code be distributed as pristine based sources plus patches, so that "unofficial"
changes (those made and added to the source by parties other than the original author) can be made available
but easily distinguished from the base source?

• Is the license free from all restrictions which discriminate against any person or group of persons? (External policy
might place such restrictions.)

• Is the license free from all restrictions that would prevent anyone from making use of the software in a specific field
or endeavor?

• Are the rights attached to the software applicable to all whom the software is redistributed without the need for
execution of an additional license by those parties?

• Are the rights attached to the software free from all dependencies on the software's being part of a particular
software redistribution? (If the software is extracted from that distribution and used or distributed within the terms of
the software's license, all parties to whom the software is redistributed should have the same rights as those granted
in conjunction with the original software distribution.)

• Is the license free from all restrictions on other software that is distributed along with the licensed software? (For
example, the license must not insist that all other software distributed on the same medium must be open source
software.)

• Is the license free of all provisions that may be predicated on any individual technology or style of interface? (The
license must be technology-neutral.)

http://opensource.org/docs/definition.php
http://nesipublic.spawar.navy.mil/nesix/View/P1121
http://nesipublic.spawar.navy.mil/nesix/View/P1123
http://nesipublic.spawar.navy.mil/nesix/View/P1126
http://nesipublic.spawar.navy.mil/nesix/View/P1069
http://nesipublic.spawar.navy.mil/nesix/View/P1125

Part 2: Traceability

Page 89

Part 2: Traceability > Open Technology Development > Open Systems

P1313: Open Systems

The DoD Open Systems Joint Task Force (OSJTF) defines an open system as "a system that employs modular design,
uses widely supported and consensus based standards for its key interfaces, and has been subjected to successful
validation and verification tests to ensure the openness of its key interfaces" [OSJTF What is an Open System?]. The
Acquisition Community Connection, hosted by the Defense Acquisition University, has additional information concerning
Modular Open Systems Approach (MOSA), the DoD "open systems" implementation [ACC Community Browser].

The Carnegie Mellon University Software Engineering Institute further defines an open system as a collection of
interacting software, hardware, and human components designed to satisfy stated needs with interface specifications
of its components that are fully defined, available to the public and maintained according to group consensus in which
the implementations of the components conform to the interface specifications [SEI Glossary].

For a system to be considered "open" it must meet all of the following criteria:

• Is the system based on an Open Architecture?

• Does the system employ Open Standards for its key interfaces?

• Are the system's key interfaces maintained using an Open Development Collaboration process?

• Are the system's key interfaces fully defined and available to the public, as is the case with Open Source?

http://www.acq.osd.mil/osjtf/whatisos.html/
https://acc.dau.mil/CommunityBrowser.aspx?id=24714
http://www.sei.cmu.edu/opensystems/glossary.html#o

Part 2: Traceability

Page 90

Part 2: Traceability > Naval Open Architecture

P1279: Naval Open Architecture

Interoperability, Maintainability, Extensibility, Composeability, and Reuseability are non-functional requirements
(NFRs) that support Open Architecture according to the Open Architecture Principles and GuidelinesR1184,R1307
[R1307] which defines two types of relationships between NFRs, Enabled By and Facilitated By. Enabled by is a strict
dependence between NFRs while an NFR that facilitates another NFR is not required but contributes.

Below is the relationship between the NFRs

 Enabled By Facilitated By

Interoperability Open Standards

 ComposeabilityMaintainability

 Reuseability

Extensibility Modularity Interoperability

Composeability Reuseability

Interoperability Reuseability

Extensibility

Detailed Perspectives

• Interoperability

• Maintainability

• Extensibility

• Composeability

• Reusability

Part 2: Traceability

Page 91

Part 2: Traceability > Naval Open Architecture > Interoperability

P1280: Interoperability

Naval Open Architecture (OA) defines interoperability as being facilited by Open Standards which makes capabilities of
a system a known quantity. OA does not restrict interoperability to the use of Open Standards.

Enablers of interoperability include the following:

• Well designed and document key internal interfaces

• Accessible metadata repository for syntatic interoperability

• COI established and standardized datamodels and metadata

• Availability of data

• Web service discovery

• Enterprise wide information assurance practicies

• Producer and consumer decoupling through message or event-drivn service bus

Inhibitors to interoperability include the following:

• Proprietary and/or unpublished APIs

• Point to point connectivity

• Application data models elevated to Enterprise data models

• Fine-grained service calls

Guidance

• G1001: Use formal standards to define public interfaces.

• G1003: Separate the contents of application libraries that are to be shared from libraries that are to be used
internally.

• G1005: Separate infrastructure capabilities from mission functions.

• G1007: Ensure that applications use open, standardized, vendor-neutral API(s).

• G1008: Isolate platform-specific interfaces and vendor dependencies.

• G1011: Make components independently deployable.

• G1012: Use a set of services to expose Component functionality.

• G1018: Assign version identifiers to all public interfaces.

• G1035: Follow W3C standards for code which will generate a Web page display.

• G1071: Use vendor-neutral interface connections to the enterprise (e.g., LDAP, JNDI, JMS, databases).

• G1073: Isolate vendor extensions to enterprise-services standard interfaces.

http://www.w3.org/

Part 2: Traceability

Page 92

• G1078: Document the use of non-Java EE-defined deployment descriptors.

• G1080: Adhere to the Web Services Interoperability Organization (WS-I) Basic Profile specification for Web
service environments.

• G1084: Validate documents transferred using SOAP against the W3C XML Standard by an XML Schema
Definition (XSD) defined by the Community of Interest (COI).

• G1085: Establish a registered namespace in the XML Gallery in the DoD Metadata Registry for all DoD
Programs.

• G1093: Implement exception handlers for SOAP-based Web services.

• G1101: Use Web services to bridge Java EE and .NET.

• G1125: Use the Department of Defense Metadata Specification (DDMS) for standardized tags and taxonomies.

• G1127: Use a UDDI specification that supports publishing discovery services.

• G1131: Use industry standard Universal Description, Discovery, and Integration (UDDI) APIs for all UDDI
inquiries.

• G1132: Implement the data tier using commercial off-the-shelf (COTS) relational database management
system (RDBMS) products that implement the SQL standard.

• G1141: Use standard data models developed by Communities of Interest (COI) as the basis of program or
project data models.

• G1202: Use the CORBA Portable Object Adapter (POA) instead of the Basic Object Adapter (BOA).

• G1203: Localize frequently used CORBA-specific code in modules that multiple applications can use.

• G1209: For Java, use JDK logging facilities.

• G1210: For .NET, use Debug and Trace from the System.Diagnostics namespace.

• G1225: Use a build tool that is independent of the Integrated Development Environment.

• G1236: Do not hard-code the endpoint of a Web service vendor.

• G1237: Do not hard-code the configuration data of a Web service vendor.

• G1245: Isolate the Web service portlet from platform dependencies using the Web Services for Remote
Portlets (WSRP) Specification protocol.

• G1267: Use industry standard HTML data entry fields on Web pages.

• G1268: Label all data entry fields.

• G1270: Include scroll bars for text entry areas if the data buffer is greater than the viewable area.

• G1276: Do not modify the contents of the Web browser's status bar.

• G1277: Do not use tickers on a Web site.

• G1278: Use the browser default setting for links.

• G1284: Use only one font for HTML body text.

• G1285: Use relative font sizes.

Part 2: Traceability

Page 93

• G1286: Provide text labels for all buttons.

• G1287: Provide feedback when a transaction will require the user to wait.

• G1292: Use text-based Web site navigation.

• G1293: Use descriptive labels for all clickable graphics.

• G1294: Provide a site map on all Web sites.

• G1295: Provide redundant text links for images within an HTML page.

• G1300: Secure all endpoints.

• G1301: Practice layered security.

• G1302: Validate all inputs.

• G1304: Unit test all code.

• G1305: Ensure the separation of encrypted and unencrypted information.

• G1306: Identify and authenticate users of the application.

• G1308: Configure Public Key Enabled applications to use a Federal Information Processing Standard (FIPS)
140-2 certified cryptographic module.

• G1309: Make applications handling high value unclassified information in Minimally Protected environments
Public Key Enabled to interoperate with DoD High Assurance .

• G1310: Protect application cryptographic objects and functions from tampering.

• G1311: Use Hypertext Transfer Protocol over Secure Socket Layer (HTTPS) when applications communicate
with DoD Public Key Infrastructure (PKI) components.

• G1312: Make applications capable of being configured for use with DoD PKI.

• G1314: Provide applications the ability to import and export keys (software certificates only).

• G1315: For applications, use key pairs and Certificates created for individuals using DoD PKI methods and
procedures defined by the DoD Class 3 Public Key Infrastructure Interface Specification and the Personal
Information Exchange Syntax Standard.

• G1316: Ensure that applications protect private keys.

• G1317: Ensure applications store Certificates for subscribers (the owner of the Public Key contained in the
Certificate) when used in the context of signed and/or encrypted email.

• G1318: Develop applications such that they provide the capability to manage and store trust points (Certificate
Authority Public Key Certificates).

• G1319: Ensure applications can recover data encrypted with legacy keys provided by the DoD PKI Key Recovery
Manager (KRM).

• G1320: Use a minimum of 128 bits for symmetric keys.

• G1321: Enable applications to be capable of performing Public Key operations necessary to verify signatures on
DoD PKI signed objects.

Part 2: Traceability

Page 94

• G1322: Ensure that applications that interact with the DoD PKI using SSL (i.e., HTTPS) are capable of encrypting
and decrypting data using the Triple Data Encryption Algorithm (TDEA).

• G1323: Generate random symmetric encryption keys when using symmetric encryption.

• G1324: Protect symmetric keys for the life of their use.

• G1325: Encrypt symmetric keys when not in use.

• G1326: Ensure applications are capable of producing Secure Hash Algorithm (SHA) digests of messages to
support verification of DoD PKI signed objects.

• G1327: Enable an application to obtain new Certificates for subscribers.

• G1328: Enable an application to retrieve Certificates for use, including relying party operations.

• G1330: Ensure applications are capable of checking the status of Certificates using a Certificate Revocation
List (CRL) if not able to use the Online Certificate Status Protocol (OCSP).

• G1331: Ensure applications are able to check the status of a Certificate using the Online Certificate Status
Protocol (OCSP).

• G1333: Only use a Certificate during the Certificate's validity range, as bounded by the Certificate's "Validity - Not
Before" and "Validity - Not After" date fields.

• G1335: Make applications capable of being configured to operate only with PKI Certificate Authorities specifically
approved by the application's owner/managing entity.

• G1338: Applications and Certificates need to be able to support multiple organizational units.

• G1339: Practice defensive programming by checking all method arguments.

• G1341: Use a security manager support to restrict application access to privileged system resources.

• G1343: Declare classes final to stop inheritance and prevent methods from being overridden.

• G1344: Encrypt sensitive data stored in configuration or resource files.

• G1347: Secure remote connections to a database.

• G1349: Validate all input that will be part of any dynamically generated SQL.

• G1350: Implement a strong password policy for RDBMS.

• G1351: Enhance database security by using multiple user accounts with constraints.

• G1352: Use database clustering and redundant array of independent disks (RAID) for high availability of data.

• G1356: Use the SOAP standard for all Web services.

• G1357: Do not rely solely on transport level security like SSL or TLS.

• G1359: Bind SOAP Web service security policy assertions to the service by expressing them in the
associated WSDL file.

• G1362: Validate incoming XML-based messages using a schema.

• G1363: Do not use clear text passwords.

Part 2: Traceability

Page 95

• G1364: Hash all passwords using the combination of a timestamp, a nonce and the password for each message
transmission.

• G1365: Specify an expiration value for all security tokens.

• G1366: Digitally sign all messages where non-repudiation is required.

• G1367: Digitally sign message fragments that are required not to change during transport.

• G1369: Digitally sign all requests made to a security token service.

• G1371: Use the Digital Signature Standard for creating Digital Signatures.

• G1372: Use an X.509 Certificate to pass a Public Key.

• G1373: Encrypt messages that cross an IA boundary.

• G1374: Individually encrypt sensitive message fragments intended for different intermediaries.

• G1376: Do not encrypt key elements that are needed for correct SOAP processing.

• G1377: Use LDAP 3.0 or later to perform all connections to LDAP repositories.

• G1378: Encrypt communication with LDAP repositories.

• G1379: Use SAML version 2.0 for representing security assertions.

• G1380: Use the XACML 2.0 standard for SAML-based rule engines.

• G1381: Encrypt all sensitive persistent data.

• G1382: Be associated with one or more Communities of Interest (COIs).

• G1383: Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

• G1384: Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.

• G1385: Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

• G1386: Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata
Registry, using those in the relational database technology which can be reused in the Program.

• G1387: Identify data elements created during Program development for registering in the Data Element Gallery
of the DoD MetaData Registry.

• G1388: Use predefined commonly used database tables in the DoD Metadata Registry.

• G1389: Publish database tables which are of common interest by registering them in the Reference Data Set
Gallery of the DoD Metadata Registry.

• G1569: Maintain a comprehensive list of all of the Components that are part of the Node.

• G1570: Assume an active management role among the Components within the Node.

• G1581: Expose legacy system or application functionality through the use of a service that uses a facade
design pattern.

• G1635: Make Nodes that will be part of the Global Information Grid (GIG) consistent with the GIG Integrated
Architecture.

Part 2: Traceability

Page 96

• G1636: Comply with the Net-Centric Operations and Warfare Reference Model (NCOW RM).

• G1637: Make Node-implemented directory services comply with the directory services Global Information Grid
(GIG) Key Interface Profiles (KIPs).

• G1638: Comply with the directory services Global Information Grid (GIG) Key Interface Profiles (KIPs) in Node
directory services proxies.

• G1640: Register Components exposed by the Node with the DISA-hosted registries.

• G1641: Comply with the Service Discovery Global Information Grid (GIG) Key Interface Profiles (KIPs) in
Node-implemented Service Discovery (SD).

• G1642: Comply with the Service Discovery Global Information Grid (GIG) Key Interface Profiles (KIPs) in
Node Service Discovery (SD) proxies.

• G1644: Comply with the Federated Search # Search Web Service (SWS) Global Information Grid (GIG) Key
Interface Profiles (KIPs) in Node implemented Federated Search # Search Web Service (SWS).

• G1645: Implement a local Content Discovery Service (CDS).

• G1646: Comply with the directory services Global Information Grid (GIG) Key Interface Profiles (KIPs) in Node
Federated Search Services proxies.

• G1713: Use an Operating Environment (OE) for all SCA applications that includes middleware that, at a
minimum, provides the services and capabilities specified by Minimum CORBA Specification version 1.0.

• G1714: Develop Software Communications Architecture (SCA) applications to use only Operating
Environment functionality defined by the SCA Application Environment Profile.

• G1724: Develop XML documents to be well formed.

• G1725: Develop XML documents to be valid XML.

• G1726: Define XML Schemas using XML Schema Definition (XSD).

• G1727: Provide names for XML type definitions.

• G1728: Define types for all XML elements.

• G1730: Follow an XML coding standard for defining schemas.

• G1737: Define a target namespace in schemas.

• G1746: Develop XSLT stylesheets that are XSLT version agnostic.

• G1753: Declare the XML schema version with an XML attribute in the root XML element of the schema
definition.

• G1754: Give each new XML schema version a unique URL.

• G1759: Use a style guide when developing Web portlets.

• G1761: Provide units of measurements when displaying data.

• G1763: Indicate the security classification for all classified data.

• G1770: Explicitly define the Data Distribution Service (DDS) Domains for the system.

Part 2: Traceability

Page 97

• G1771: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe the
behavior of a publisher.

• G1772: Assign a unique identifier for each Data-Distribution Service (DDS) Domain within the system.

• G1785: Stipulate that evaluation criteria will include the extent to which an Offeror's proposed technical solution
builds on reuse of common functionality.

• G1786: Stipulate that evaluation criteria will include the extent to which an Offeror's proposed technical solution
builds on well defined services.

• G1787: Stipulate that the Offeror is to use NESI to assess net-centricity and interoperability.

• G1796: Explicitly define all the Data Distribution Service (DDS) Domain Topics.

• G1798: Explicitly define all the Data Distribution Service (DDS) Domain data types.

• G1799: Explicitly associate data types to the Data Distribution Service (DDS) Topics within a DDS Domain

• G1800: Explicitly identify Keys within the Data Distribution Service (DDS) data type that uniquely identify an
instance of a data object.

• G1801: Explicitly define a Topic Quality of Service (QoS) for each Data Distribution Service (DDS) Topic within
a DDS Domain.

• G1803: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe real-
time messaging criteria for Publishers.

• G1804: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe
DataWriter.

• G1805: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe the
behavior of the Subscriber.

• G1806: Explicitly define the Request-Offered Data Distribution Service (DDS) Quality of Service (QoS) Policies
to describe the behavior of the DataReader.

• G1808: Handle all Data Distribution Service (DDS) Quality of Service (QoS) contract violations using one of the
Subscriber access APIs.

• G1810: Use data models to document the data contained within the Data Distribution Service (DDS) Data-
Centric Publish Subscribe (DCPS).

• G1797: Use a minimum of 1024 bits for asymmetric keys.

Best Practices

• BP1392: Register services in accordance with a documented service registration plan.

Part 2: Traceability

Page 98

Part 2: Traceability > Naval Open Architecture > Maintainability

P1281: Maintainability

In the Naval Open Architecture (OA) context, maintainability is "the portion of a component's or sytem's lifecycle after
installation, including its end of life. Key to this lifecycle is updating the system to introduce new technology, changed
business processes, etc." (see Open Architecture Principles and Guidelines section 2.1.7.1 [R1307]). Maintainability
depends on a modular system with well-defined interfaces and documentation for all aspects of the lifecycle of a system.

Enablers of maintainability include the following:

• Modular design with well-defined, stable interfaces

• Loose coupling

• Clear and concise documentation

• Use cases and testing

• Compliance with open standards

Inhibitors of maintainability include the following:

• Frequent changes to interfaces

• Tightly coupled and heavily optimized solutions

Guidance

• G1001: Use formal standards to define public interfaces.

• G1002: Separate public interfaces from implementation.

• G1003: Separate the contents of application libraries that are to be shared from libraries that are to be used
internally.

• G1004: Make public interfaces backward-compatible within the constraints of a published deprecation policy.

• G1018: Assign version identifiers to all public interfaces.

• G1019: Deprecate public interfaces in accordance with a published deprecation policy.

• G1021: Create fully insulated classes.

• G1022: Insulate public interfaces from compile-time dependencies.

• G1027: Internally document all source code developed with DoD funding.

• G1032: Validate all input fields.

• G1043: Separate formatting from data through the use of style sheets instead of hard coded HTML attributes.

• G1044: Comply with Federal accessibility standards contained in Section 508 of the Rehabilitation Act of 1973
(as amended) when developing software user interfaces.

• G1052: Use the code-behind feature in ASP.NET to separate presentation code from the business logic.

• G1053: Do not embed HTML code in any code-behind code used by aspx pages.

Part 2: Traceability

Page 99

• G1056: Specify a versioning policy for .NET assemblies.

• G1058: Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

• G1060: Encapsulate Java code that is used in JSP(s) in tag libraries.

• G1071: Use vendor-neutral interface connections to the enterprise (e.g., LDAP, JNDI, JMS, databases).

• G1073: Isolate vendor extensions to enterprise-services standard interfaces.

• G1082: Use the document-literal style for all data transferred using SOAP where the document uses the World
Wide Web Consortium (W3C) Document Object Model (DOM).

• G1083: Do not pass Web Services-Interoperability Organization (WS-I) Document Object Model (DOM)
documents as strings.

• G1085: Establish a registered namespace in the XML Gallery in the DoD Metadata Registry for all DoD
Programs.

• G1088: Use isolation design patterns to define system functionality that manipulates Web services.

• G1090: Do not hard-code a Web service's endpoint.

• G1094: Catch all exceptions for application code exposed as a Web service.

• G1095: Use W3C fault codes for all SOAP faults.

• G1118: Localize CORBA vendor-specific source code into separate modules.

• G1121: Do not modify CORBA Interface Definition Language (IDL) compiler auto-generated stubs and skeletons.

• G1132: Implement the data tier using commercial off-the-shelf (COTS) relational database management
system (RDBMS) products that implement the SQL standard.

• G1146: Include information in the data model necessary to generate a data dictionary.

• G1147: Use domain analysis to define the constraints on input data validation.

• G1148: Normalize data models.

• G1151: Define declarative foreign keys for all relationships between tables to enforce referential integrity.

• G1153: Separate application, presentation, and data tiers.

• G1154: Use stored procedures for operations that are focused on the insertion and maintenance of data.

• G1202: Use the CORBA Portable Object Adapter (POA) instead of the Basic Object Adapter (BOA).

• G1203: Localize frequently used CORBA-specific code in modules that multiple applications can use.

• G1204: Create configuration services to provide distributed user control of the appropriate configuration
parameters.

• G1205: Use non-source code persistence to store all user-modifiable CORBA service configuration parameters.

• G1208: Add new functionality rather than redefining existing interfaces in a manner that brings incompatibility.

• G1213: Provide an architecture design document.

• G1214: Provide a document with a plan for deprecating obsolete interfaces.

Part 2: Traceability

Page 100

• G1215: Provide a coding standards document.

• G1216: Provide a software release plan document.

• G1217: Develop and use externally configurable components.

• G1218: Use a build tool that supports operation in an automated mode.

• G1219: Use a build tool that checks out files from configuration control.

• G1220: Use a build tool that compiles source code and dependencies that have been modified.

• G1221: Use a build tool that creates libraries or archives after all required compilations are completed.

• G1222: Use a build tool that creates executables.

• G1223: Use a build tool that is capable of running unit tests.

• G1224: Use a build tool that cleans out intermediate files that can be regenerated.

• G1225: Use a build tool that is independent of the Integrated Development Environment.

• G1236: Do not hard-code the endpoint of a Web service vendor.

• G1237: Do not hard-code the configuration data of a Web service vendor.

• G1239: Use design patterns (e.g., facade, proxy, or adapter) or property files to isolate vendor-specifics of
vendor-dependent connections to the enterprise.

• G1267: Use industry standard HTML data entry fields on Web pages.

• G1271: Provide instructions and HTML examples for all style sheets.

• G1283: Use linked style sheets rather than embedded styles.

• G1300: Secure all endpoints.

• G1301: Practice layered security.

• G1307: Provide a security policy file.

• G1308: Configure Public Key Enabled applications to use a Federal Information Processing Standard (FIPS)
140-2 certified cryptographic module.

• G1309: Make applications handling high value unclassified information in Minimally Protected environments
Public Key Enabled to interoperate with DoD High Assurance .

• G1311: Use Hypertext Transfer Protocol over Secure Socket Layer (HTTPS) when applications communicate
with DoD Public Key Infrastructure (PKI) components.

• G1312: Make applications capable of being configured for use with DoD PKI.

• G1313: Provide documentation for application configuration and setup for use with DoD PKI.

• G1314: Provide applications the ability to import and export keys (software certificates only).

• G1315: For applications, use key pairs and Certificates created for individuals using DoD PKI methods and
procedures defined by the DoD Class 3 Public Key Infrastructure Interface Specification and the Personal
Information Exchange Syntax Standard.

Part 2: Traceability

Page 101

• G1318: Develop applications such that they provide the capability to manage and store trust points (Certificate
Authority Public Key Certificates).

• G1319: Ensure applications can recover data encrypted with legacy keys provided by the DoD PKI Key Recovery
Manager (KRM).

• G1320: Use a minimum of 128 bits for symmetric keys.

• G1321: Enable applications to be capable of performing Public Key operations necessary to verify signatures on
DoD PKI signed objects.

• G1322: Ensure that applications that interact with the DoD PKI using SSL (i.e., HTTPS) are capable of encrypting
and decrypting data using the Triple Data Encryption Algorithm (TDEA).

• G1323: Generate random symmetric encryption keys when using symmetric encryption.

• G1324: Protect symmetric keys for the life of their use.

• G1325: Encrypt symmetric keys when not in use.

• G1326: Ensure applications are capable of producing Secure Hash Algorithm (SHA) digests of messages to
support verification of DoD PKI signed objects.

• G1327: Enable an application to obtain new Certificates for subscribers.

• G1328: Enable an application to retrieve Certificates for use, including relying party operations.

• G1330: Ensure applications are capable of checking the status of Certificates using a Certificate Revocation
List (CRL) if not able to use the Online Certificate Status Protocol (OCSP).

• G1331: Ensure applications are able to check the status of a Certificate using the Online Certificate Status
Protocol (OCSP).

• G1333: Only use a Certificate during the Certificate's validity range, as bounded by the Certificate's "Validity - Not
Before" and "Validity - Not After" date fields.

• G1335: Make applications capable of being configured to operate only with PKI Certificate Authorities specifically
approved by the application's owner/managing entity.

• G1338: Applications and Certificates need to be able to support multiple organizational units.

• G1340: Log all exceptional conditions.

• G1342: Restrict direct access to class internal variables to functions or methods of the class itself.

• G1343: Declare classes final to stop inheritance and prevent methods from being overridden.

• G1346: Audit database access.

• G1348: Log database transactions.

• G1352: Use database clustering and redundant array of independent disks (RAID) for high availability of data.

• G1356: Use the SOAP standard for all Web services.

• G1359: Bind SOAP Web service security policy assertions to the service by expressing them in the
associated WSDL file.

• G1372: Use an X.509 Certificate to pass a Public Key.

Part 2: Traceability

Page 102

• G1378: Encrypt communication with LDAP repositories.

• G1576: Provide an environment to support the development, build, integration, and test of net-centric capabilities.

• G1577: Maintain an Enterprise Service schedule for interim and final enterprise capabilities within the Node.

• G1578: Define a schedule for Components that includes the use of the Enterprise Services defined within the
Node's enterprise service schedule.

• G1582: In Node Enterprise Service schedules, include version numbers of standard Enterprise Services
interfaces being implemented.

• G1583: Provide routine Enterprise Services schedule updates to every Component of a Node.

• G1717: Use constants instead of hard-coded numbers for characteristics that may change throughout the lifetime
of the model.

• G1718: Design circuits to be synchronous.

• G1719: Automate testbench error checking in VHDL development.

• G1727: Provide names for XML type definitions.

• G1728: Define types for all XML elements.

• G1729: Annotate XML type definitions.

• G1730: Follow an XML coding standard for defining schemas.

• G1731: Only reference XML elements defined by a Type in substitution groups.

• G1735: Use the .xsd file extension for files that contain XML Schema definitions.

• G1736: Separate document schema definition and document instance into separate documents.

• G1740: Append the suffix Type to XML type names.

• G1744: Only reference abstract XML elements in substitution groups.

• G1745: Append the suffix Group to substitution group XML element names.

• G1751: Document all XSLT code.

• G1753: Declare the XML schema version with an XML attribute in the root XML element of the schema
definition.

• G1754: Give each new XML schema version a unique URL.

• G1755: Use accepted file extensions for all files that contain XSL code.

• G1756: Isolate XPath expression statements into the configuration data.

• G1773: Use #include guards for all headers.

• G1774: Make header files self-sufficient.

• G1775: Do not overload the logical AND operator.

• G1776: Do not overload the logical OR operator.

Part 2: Traceability

Page 103

• G1777: Do not overload the comma operator.

• G1778: Place all #include statements before all namespace using statements.

• G1779: Explicitly namespace-qualify all names in header files.

Part 2: Traceability

Page 104

Part 2: Traceability > Naval Open Architecture > Extensibility

P1282: Extensibility

Extensible systems facilitate adding future capabilities and points of contact or integration. To support this, Open
Architecture defines an extensible system as one with "sufficient internal quality and compartmentalization of data and
behavior that new capabilities do not introduce unintended chages to existing data and behavior" (see Open Architecture
Principles and Guidelines [R1307]). To achieve this, a system must be modular and be interoperable.

Enablers of extensibility include the following:

• Well defined points of variability

• Layered architecture

• Loose coupling

Inhibitors to extensibility include the following:

• Undocumented design and architecture assumptions

Guidance

• G1002: Separate public interfaces from implementation.

• G1203: Localize frequently used CORBA-specific code in modules that multiple applications can use.

• G1271: Provide instructions and HTML examples for all style sheets.

Part 2: Traceability

Page 105

Part 2: Traceability > Naval Open Architecture > Composeability

P1283: Composeability

Composeable systems allow for components to be selected and assembled in different ways to meet user requirements.
In order for a system to be composeable its components must also be reuseable, interoperable, extensible, and modular
as defined by Open Architecture. [R1307]

Enablers of composeability include the following:

• Standard enterprise ontology

• Enterprise service bus

• Clearly defined QoS

• Tools for composing services

Inhibitors to composeability include the following:

• No enterprise architecture management

Guidance

• G1002: Separate public interfaces from implementation.

• G1003: Separate the contents of application libraries that are to be shared from libraries that are to be used
internally.

• G1011: Make components independently deployable.

• G1012: Use a set of services to expose Component functionality.

• G1022: Insulate public interfaces from compile-time dependencies.

• G1045: Define XML format information separately in XSL.

• G1050: In ASP, isolate the presentation tier from the middle tier using COM objects.

• G1052: Use the code-behind feature in ASP.NET to separate presentation code from the business logic.

• G1058: Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

• G1060: Encapsulate Java code that is used in JSP(s) in tag libraries.

• G1088: Use isolation design patterns to define system functionality that manipulates Web services.

• G1144: Develop two-level database models: one level captures the conceptual or logical aspects, and the other
level captures the physical aspects.

• G1153: Separate application, presentation, and data tiers.

• G1155: Use triggers to enforce referential or data integrity, not to perform complex business logic.

• G1202: Use the CORBA Portable Object Adapter (POA) instead of the Basic Object Adapter (BOA).

• G1713: Use an Operating Environment (OE) for all SCA applications that includes middleware that, at a
minimum, provides the services and capabilities specified by Minimum CORBA Specification version 1.0.

Part 2: Traceability

Page 106

• G1714: Develop Software Communications Architecture (SCA) applications to use only Operating
Environment functionality defined by the SCA Application Environment Profile.

• G1719: Automate testbench error checking in VHDL development.

Part 2: Traceability

Page 107

Part 2: Traceability > Naval Open Architecture > Reusability

P1284: Reusability

Open Architecture defines a reusable artifact as one that provides a capability that can be used in multiple contexts.
Reuse is not confined to a software component but any lifecycle artifact including training, documentation, and
configuration. Open Architecture is concerned with artifacts which relate to the design, construction, and configuration of a
component.

Enablers of reusability include the following:

• Use of Reuseable Asset Specification (RAS)

• Low code complexity

• Components that depend primarily on OA interfaces

Inhibitors to reusability include the following:

• Serialized or single-threaded implementation

• Proprietary standards

• Cut-and-paste programming

Guidance

• G1019: Deprecate public interfaces in accordance with a published deprecation policy.

• G1045: Define XML format information separately in XSL.

• G1058: Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

• G1060: Encapsulate Java code that is used in JSP(s) in tag libraries.

• G1144: Develop two-level database models: one level captures the conceptual or logical aspects, and the other
level captures the physical aspects.

• G1203: Localize frequently used CORBA-specific code in modules that multiple applications can use.

• G1217: Develop and use externally configurable components.

• G1271: Provide instructions and HTML examples for all style sheets.

• G1283: Use linked style sheets rather than embedded styles.

• G1311: Use Hypertext Transfer Protocol over Secure Socket Layer (HTTPS) when applications communicate
with DoD Public Key Infrastructure (PKI) components.

• G1321: Enable applications to be capable of performing Public Key operations necessary to verify signatures on
DoD PKI signed objects.

• G1335: Make applications capable of being configured to operate only with PKI Certificate Authorities specifically
approved by the application's owner/managing entity.

• G1356: Use the SOAP standard for all Web services.

• G1377: Use LDAP 3.0 or later to perform all connections to LDAP repositories.

Part 2: Traceability

Page 108

• G1382: Be associated with one or more Communities of Interest (COIs).

• G1383: Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

• G1384: Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.

• G1385: Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

• G1386: Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata
Registry, using those in the relational database technology which can be reused in the Program.

• G1387: Identify data elements created during Program development for registering in the Data Element Gallery
of the DoD MetaData Registry.

• G1388: Use predefined commonly used database tables in the DoD Metadata Registry.

• G1389: Publish database tables which are of common interest by registering them in the Reference Data Set
Gallery of the DoD Metadata Registry.

• G1569: Maintain a comprehensive list of all of the Components that are part of the Node.

• G1713: Use an Operating Environment (OE) for all SCA applications that includes middleware that, at a
minimum, provides the services and capabilities specified by Minimum CORBA Specification version 1.0.

• G1714: Develop Software Communications Architecture (SCA) applications to use only Operating
Environment functionality defined by the SCA Application Environment Profile.

• G1717: Use constants instead of hard-coded numbers for characteristics that may change throughout the lifetime
of the model.

• G1718: Design circuits to be synchronous.

• G1719: Automate testbench error checking in VHDL development.

• G1759: Use a style guide when developing Web portlets.

• G1773: Use #include guards for all headers.

• G1774: Make header files self-sufficient.

• G1775: Do not overload the logical AND operator.

• G1776: Do not overload the logical OR operator.

• G1777: Do not overload the comma operator.

• G1778: Place all #include statements before all namespace using statements.

• G1779: Explicitly namespace-qualify all names in header files.

• G1784: Include a statement in the solicitation for Contractors to identify and list data rights for all proposed
products.

• G1785: Stipulate that evaluation criteria will include the extent to which an Offeror's proposed technical solution
builds on reuse of common functionality.

• G1786: Stipulate that evaluation criteria will include the extent to which an Offeror's proposed technical solution
builds on well defined services.

• G1787: Stipulate that the Offeror is to use NESI to assess net-centricity and interoperability.

Part 2: Traceability

Page 109

• G1788: Stipulate that the Offeror is to use Government approved data rights labels and markings for all
deliverables that are identified as Unlimited or Government Purpose Rights.

Best Practices

• BP1392: Register services in accordance with a documented service registration plan.

Part 2: Traceability

Page 110

Part 2: Traceability > Relationship with the JCIDS Process

P1122: Relationship with the JCIDS Process

The appropriate timeframe to start implementing net-centricity and interoperability is during the early definition of the
system with the preparation of the Capabilities Documents. These documents, prepared under the Joint Capabilities
Integration and Development System (JCIDS), set the stage for the subsequent acquisition process. Before initiating
a program, the JCIDS process identifies warfighting capability and supportability gaps and the Doctrine, Organization,
Training, Materiel, Leadership and education, Personnel, and Facilities (DOTMLPF) capabilities required to fill those
gaps. The documentation developed during the JCIDS process provides the formal communication of capability needs
between the warfighter, acquisition, and resource management communities.

Program sponsors, in coordination with program managers, should consider applicable NESI guidance when preparing
JCIDS documents. Program sponsors and managers can use Part 1 and Part 2 to develop a high-level foundational
understanding of the relevant issues and have a starting point for planning relevant activities and strategies. Incorporating
this guidance facilitates meeting the requirements of the ASD(NII) Net-Centric Checklist (see P1239). This is a means of
increasing interoperability and aiding the development of architectural products. Program personnel should look for the
attributes in the program capabilities documents (with reference to the relevant portions of NESI) that are contained in
Table 1 below.

 Table 1 - Relationship between JCIDS Documents, Process Milestones, and NESI Guidance

JCIDS Document Milestones Description Relevant NESI Guidance

Initial Capabilities
Document
(ICD)

 A, B, C Defines capability gap in
terms of functional area(s),
relevant range of military
operations, time, obstacles
to overcome, and key
attributes, with appropriate
measures of effectiveness.

Recommends materiel
approach(s) based
on cost analysis,
efficacy, sustainability,
environmental quality
impacts, and associated
risks.

Parts 1, 2

Capability Development
Document
(CDD)

 B Provides operational
performance attributes,
including supportability,
for the acquisition
community to design
the proposed system.
Includes key performance
parameters (KPP) and
other parameters that
guide the development,
demonstration, and testing
of the current increment.

Outlines the overall
strategy for developing full
capability.

Parts 2, 3, 4
Net-Ready Key
Performance Parameter
(NR-KPP) developed for
this CDD

Capability Production
Document
(CPD)

 C Addresses the production
attributes and quantities
specific to a single

Parts 3, 4, 5

http://nesipublic.spawar.navy.mil/nesix/View/P1286

Part 2: Traceability

Page 111

increment of an acquisition
program.

Supersedes threshold and
objective performance
values of the CDD.

Updated NR-KPP required
in this CPD

The Net-Ready Key Performance Parameter (NR-KPP) noted in Table 1 measures the net-centricity of a new program or
major upgrade. The NR-KPP contains four elements:

• Compliance with the Net-Centric Operations and Warfare Reference Model (NCOW RM)

• Compliance with applicable Global Information Grid Key Interface Profiles (KIPs)

• Compliance with DoD information assurance (IA) requirements

• Support for integrated architecture products that assess information exchange and use for a given capability

Refer to the Defense Acquisition University (DAU) Defense Acquisition Guidebook Section 7.3.4 for further information
on the NR-KPP elements.

The program sponsor and manager can also use NESI to aid in the development of the NR-KPP as show in Table 2.

Table 2 - Relationship between NESI and the NR-KPP

 NESI NCOW RM
Services
Strategy

NCOW RM
Data
Strategy

NCOW RM
IA
Strategy

Information
Assurance

Key Interface
Profiles (KIPs)

Integrated
Architectures

 Part 1 3.2, 3.3.2,
4.4

3.2, 3.4, 4.2 3.2 3.3.1 1.5, 4.3 - 4.6

 Part 2 4.1, 4.7,
7.0, 8.0

3.1 - 3.6, 8.0 5.1 - 5.7, 8.0 5.1 - 5.7, 8.0 4.1 4.1, 4.2, 6.3

 Part 3 All Net-Centric
Data Strategy
(NCDS)

Migration
Concern:
Security

 Migration
Concern:
Architecture
Documentation
Maintenance,
Migration
Planning
Process

 Part 4 2.2 - 2.4 2.2 - 2.4 2.2 - 2.4 2.2 - 2.4 2.2 - 2.4 All of Part 4,
but especially
2.4 .1

 Part 5 Web Services,
Browser-
Based
Clients

Data Tier,
Data,
Metadata

Application
Security

Application
Security

 Technical
Guidance
and Tactics

 Part 6 N/A N/A N/A N/A N/A N/A

https://akss.dau.mil/dag/Guidebook/IG_c7.3.4.asp

Guidance and Best Practice Details

Part 2: Traceability

Page 113

G1001

Statement:

Use formal standards to define public interfaces.

Rationale:

It is important to use a common language to define the interfaces so producers and consumers can work
independently and together.

There are many standards for defining interfaces (UML, WSDL, and CORBA). Use a documented standard that is
widely accepted by industry.

Referenced By:

Maintainability
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Make Data Interoperable
Interoperability
Design Tenet: Open Architecture
Design Tenet: Accommodate Heterogeneity
Publish and Insulate Public Interfaces

Evaluation Criteria:

1) Test: [G1001.1]

Do UML documents exist that describe the shared interfaces?

Procedure:

Ask for the design documents to be provided during the review process.

Example:

None

2) Test: [G1001.2]

Are there WSDL files that document the interface to Web services?

Procedure:

Look for the existence of .WSDL files.

Example:

None

3) Test: [G1001.3]

Are there IDL files that document the interfaces to CORBA services?

Part 2: Traceability

Page 114

Procedure:

Look for the existence of .idl files.

Example:

None

Part 2: Traceability

Page 115

G1002

Statement:

Separate public interfaces from implementation.

Rationale:

This guidance encourages clean separation between interface and implementation details for all types of
application development. This allows components and systems to be loosely coupled. The flexibility allows
groups of developers to work independently and in parallel to the contract defined by the interface.

Another benefit of hiding implementation details is that it allows the implementation to change without affecting
users of the interface. This means the interface can support dynamic and pluggable implementation.

Referenced By:

Design Tenet: Open Architecture
Composeability
Publish and Insulate Public Interfaces
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity
Maintainability
Extensibility

Evaluation Criteria:

1) Test: [G1002.1]

C++: Check to make sure interfaces are defined as pure virtual functions.

Procedure:

Make sure C++ classes are defined in header files. Classes that represent external interfaces should contain only
pure virtual functions. Make sure the class does not declare non-constant data members. Also, make sure it does not
define default implementation. An interface should provide no default behavior.

Example:

None

2) Test: [G1002.2]

C: Check to make sure functions are declared in a header file using prototypes.

Procedure:

Make sure each library function has a prototype declaration in the header file.

Example:

None

Part 2: Traceability

Page 116

G1003

Statement:

Separate the contents of application libraries that are to be shared from libraries that are to be used internally.

Rationale:

The public libraries that are intended to be shared with outside consumers need to remain fairly static in order
to facilitate independent development by the consumer and the producer of the libraries' functionality. The
consumer and the producer should mutually agree to changes in libraries.

All library content should not have external dependencies that are not related to supporting the interface.

There must be clear separation between domain-specific and shared libraries. Libraries that will be used in joint or
multiple projects should not have domain-specific code.

Referenced By:

Design Tenet: Accommodate Heterogeneity
Interoperability
Maintainability
Publish and Insulate Public Interfaces
Composeability
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Design Tenet: Cross-Security-Domains Exchange

Evaluation Criteria:

1) Test: [G1003.1]

Do the publicly shared libraries have any private or undocumented functionality?

Procedure:

Check each library against the publicly defined header and make sure that all objects or methods are public.

Example:

None

2) Test: [G1003.2]

Does the library contain extraneous interfaces or code that is not required?

Procedure:

Use coverage tool/Junit to make sure there is no extraneous code.

Example:

None

Part 2: Traceability

Page 117

3) Test: [G1003.3]

Do the publicly shared libraries have any private or undocumented functionality?

Procedure:

Check to make sure that one library use of another library does not cross domain-specific boundaries. For instance,
a common library of utilities should not have dependencies on another library that supports a specific such as UHF
satellites. However, the reverse is okay.

Example:

None

Part 2: Traceability

Page 118

G1004

Statement:

Make public interfaces backward-compatible within the constraints of a published deprecation policy.

Rationale:

The public interface is basically a contract between the producer of the functionality defined in an interface and
the consumer of the functionality. This and related guidance statements are intended to ensure that this contract
remains intact and that the consumer of the functionality is not broken during the update cycle of the interface.

Referenced By:

Public Interface Design
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity
Maintainability
Design Tenet: Open Architecture
Publish and Insulate Public Interfaces
Versioning XML Schemas

Evaluation Criteria:

1) Test: [G1004.1]

Does the public interface (interfaces that are used externally, outside the project's domain) contain versioning
information?

Procedure:

Check to make sure the interface/class has versioning information.

Example:

None

2) Test: [G1004.2]

Does the document structure contain a document that indicates the shelf life of deprecated interfaces?

Procedure:

Check for project documents that have information on the life of deprecated interfaces.

Example:

None

Part 2: Traceability

Page 119

G1005

Statement:

Separate infrastructure capabilities from mission functions.

Rationale:

Applications should not try to reinvent the wheel by creating custom enterprise services such as messaging,
directory services, logging, etc. Application development should use standardized APIs to access common
enterprise services. For instance, in Java, use JMS to access a messaging system.

Referenced By:

Publish and Insulate Public Interfaces
Design Tenet: Accommodate Heterogeneity
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Interoperability

Evaluation Criteria:

1) Test: [G1005.1]

Does the application re-create common and available enterprise services?

Procedure:

Check the application code for code that recreates functionality of an enterprise service.

Example:

None

2) Test: [G1005.2]

Does the application code access enterprise services in a vendor-specific way?

Procedure:

Check for code that accesses a vendor-specific API instead of utilizing an industry-standard API.

Example:

None

Part 2: Traceability

Page 120

G1007

Statement:

Ensure that applications use open, standardized, vendor-neutral API(s).

Rationale:

Using standardized, open APIs will enable the code to be more portable. It will also prevent vendor lock-in.
"Standardized" means industry consensus. "Open" means available to everyone.

Referenced By:

Publish and Insulate Public Interfaces
Design Tenet: Open Architecture
Interoperability
Design Tenet: Accommodate Heterogeneity
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1007.1]

Does the application create customized/proprietary solutions where standardized APIs exists?

Procedure:

Check the application for code that has proprietary solutions where standardized APIs exists. For instance, does the
application write its own messaging system, bypassing utilizing the API.

Example:

None

2) Test: [G1007.2]

Does the application utilize vendor-specific APIs?

Procedure:

Check the application to make sure it is not using vendor-specific APIs. For instance, see if the application accesses
the database using a proprietary interface from Oracle instead of the standard calls.

Example:

None

Part 2: Traceability

Page 121

G1008

Statement:

Isolate platform-specific interfaces and vendor dependencies.

Rationale:

Insulating platform-specific code using standard abstractions or custom classes will keep all non-portable code in
one place and prevent proliferation of non-portable code throughout the application.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Publish and Insulate Public Interfaces
Design Tenet: Accommodate Heterogeneity
Interoperability

Evaluation Criteria:

1) Test: [G1008.1]

Does the application contain any platform-specific code that has not been abstracted?

Procedure:

Check code that is non-portable; for instance, the code does not use back slashes (Windows) or forward slashes
(UNIX) in literal strings to create a path.

Example:

String path = "\tmp";

2) Test: [G1008.2]

Is platform-specific code isolated into a single class or file?

Procedure:

Search the files for platform-specific code.

Example:

None

Part 2: Traceability

Page 122

G1010

Statement:

Use open-standard logging frameworks.

Rationale:

Standardizing on one logging API means the code will be more portable between developers, and developers no
longer need to learn multiple logging frameworks.

Referenced By:

Publish and Insulate Public Interfaces
Design Tenet: Open Architecture
Design Tenet: Enterprise Service Management
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [G1010.1]

See sublevel guidance: G1209, G1210.

Procedure:

Example:

Part 2: Traceability

Page 123

G1011

Statement:

Make components independently deployable.

Rationale:

Independently deployable components do not have any dependencies on other components. This is often
unattainable because components are often aggregations of lower-level components. Exceptions to this rule can
occur if the relationships between components are one or more of the following:

• well-defined and well thought out

• carefully managed

• externally configurable

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Interoperability
Design Tenet: Accommodate Heterogeneity
Composeability
Implement a Component-Based Architecture
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1011.1]

Is the component dependent on other components?

Procedure:

Check for dependencies.

Example:

None

Part 2: Traceability

Page 124

G1012

Statement:

Use a set of services to expose Component functionality.

Rationale:

By exposing discrete units of functionality as services, business and data integrity remain intact. A service
receives a request, processes it, and returns the result to the requester as a single operation.

Referenced By:

Design Tenet: Scalability
Interoperability
Design Tenet: Service-Oriented Architecture (SOA)
Implement a Component-Based Architecture
Design Tenet: Accommodate Heterogeneity
Design Tenet: Open Architecture
Composeability

Evaluation Criteria:

1) Test: [G1012.1]

Are there WAR files that contain the component?

Procedure:

Check for the occurrence of .war files.

Example:

None.

2) Test: [G1012.2]

Are there WSDL files that define the services?

Procedure:

Check for the occurrence of .wsdl files.

Example:

None.

Part 2: Traceability

Page 125

G1014

Statement:

Access databases through open standard interfaces.

Rationale:

The use of non-standard interfaces can cause portability issues. Standards-based database interfaces promote
database independence. For example, ODBC is a standard database interface for referencing databases with C/C
++ and .NET, while Java Database Connection (JDBC) is a standard API for accessing databases with Java.

Referenced By:

Decouple from Applications
Design Tenet: Open Architecture
Design Tenet: Accommodate Heterogeneity
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1014.1]

Are standard interfaces used to access databases?

Procedure:

Check that standards-based interfaces are used to access databases; for example, ODBC for C,C++, or .NET
languages, or JDBC for Java.

Example:

None.

Part 2: Traceability

Page 126

G1018

Statement:

Assign version identifiers to all public interfaces.

Rationale:

Assigning versions is necessary when determining compatibility between the interface and its consumer.
Versioning public interfaces allows all parties to track the evolution of the interface for backward compatibility. This
can help consumers plan for integration and migration. It is important to have the version information in the shared
public interface code because it identifies the actual interface to which consumers of the interface will be coding.
Another benefit is that it allows tools to generate the documentation automatically so it does not need to be in two
places.

Referenced By:

Design Tenet: Open Architecture
Maintainability
Design Tenet: Service-Oriented Architecture (SOA)
Public Interface Design
Interoperability
Publish and Insulate Public Interfaces
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [G1018.1]

Does the shared public interface code contain versioning information?

Procedure:

Inspect public interfaces or their supporting documentation for version identifiers.

Example:

None.

Part 2: Traceability

Page 127

G1019

Statement:

Deprecate public interfaces in accordance with a published deprecation policy.

Rationale:

By deprecating instead of removing interfaces, development teams can plan for software migration and continue to
run the software with existing (but deprecated) interfaces.

Referenced By:

Reusability
Public Interface Design
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Publish and Insulate Public Interfaces
Design Tenet: Accommodate Heterogeneity
Versioning XML Schemas
Maintainability

Evaluation Criteria:

1) Test: [G1019.1]

Are public interfaces appropriately deprecated?

Procedure:

Check the project documentation for deprecation policy.

Check that interfaces are properly marked and removed according to the deprecation policy.

Example:

None

Part 2: Traceability

Page 128

G1021

Statement:

Create fully insulated classes.

Rationale:

Data members should not be public.

Do not expose implementation details of a class. For instance, information such as the use of a link list or
hashtablein a class should not be exposed (i.e., made public).

Making implementation details public creates interdependencies between the class and its users, subjecting the
users to changes in implementation. Therefore, access should only occur via public interface methods. This makes
the implementation more robust, because all data can be validated when assigned new values or the changes can
be logged.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Maintainability
Public Interface Design
Design Tenet: Accommodate Heterogeneity
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1021.1]

Do instance variables have public access or are they more accessible than necessary?

Procedure:

Check that the instance variable in classes does not have public access unless it is static and final.

Example:

None

2) Test: [G1021.2]

Does the class provide direct access to internal data via pass by reference?

Procedure:

Check to make sure that the methods that access the internal state do not return a reference to the internal data.

Example:

None

Part 2: Traceability

Page 129

G1022

Statement:

Insulate public interfaces from compile-time dependencies.

Rationale:

There are three distinct advantages to separating interface from implementation:

• Multiple interested parties (COIs) can develop the interface and publish it to the user community ahead of
any specific implementation. This allows groups to work independently and in parallel.

• It prevents multiple copies of the defining interface. Duplicating the code for the interface in each
implementation (library, jar, and assembly) makes it difficult to maintain, especially as the interface evolves.

• It insulates developers from the constant changes in implementation.

Referenced By:

Publish and Insulate Public Interfaces
Maintainability
Design Tenet: Open Architecture
Design Tenet: Service-Oriented Architecture (SOA)
Public Interface Design
Design Tenet: Accommodate Heterogeneity
Composeability

Evaluation Criteria:

1) Test: [G1022.1]

Is the packaging or deployment of the public interface self-contained and isolated to only the public interface(s)?

Procedure:

Check to make sure that the jar, library, assembly, and WSDL only contain the agreed-upon public interface
(interfaces being shared externally).

Example:

None

2) Test: [G1022.2]

Does the container (jars, libraries, assemblies, WSDL) contain files other than the interface?

Procedure:

Check to make sure the library does not include or rely upon any other files such as resource files, properties files,
configuration files, other libraries, XML files, and so on that would force the repackaging of the public interface.

Part 2: Traceability

Page 130

Example:

None

3) Test: [G1022.3]

Are there any outside influences that could affect the packaging of the public interface?

Procedure:

Check the public interface for dependence on resource files, properties files, configuration files, XML files, and other
libraries or packages.

Example:

None

Part 2: Traceability

Page 131

G1027

Statement:

Internally document all source code developed with DoD funding.

Rationale:

Well-documented source code is easier to maintain and enhance over time. It is hard enough to get documentation
about software and to keep it up to date. If the documentation is not internal to the source code, the chances
that the software is current and up-to-date decreases. In recent years, the trend has been to generate external
documentation about the software by processing the source code and comments (e.g., Javadoc).

In addition to documenting the functionality of the source code, it is important to capture the configuration control
information (e.g., CVS).

Referenced By:

Standard Interface Documentation
Design Tenet: Service-Oriented Architecture (SOA)
Maintainability
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1027.1]

Do all the source code files have a header that includes a statement protecting government rights to the source code
and the right to change the source code?

Procedure:

Scan each file and make sure the header includes a statement that protects the government's right to use, modify, and
share the information with other government departments and agencies.

Example:

None

2) Test: [G1027.2]

Do all the source code files have a header that includes configuration information?

Procedure:

Scan each file and make sure the header also includes configuration management information such as author, date
created, and a history of modifications and versions.

Example:

None

Part 2: Traceability

Page 132

3) Test: [G1027.3]

Do all the source code files have internal documentation for attributes, methods that a computer process?

Procedure:

Scan the source files and make sure they are internally documented with tags such as Javadoc or XML tags.

Example:

None

Part 2: Traceability

Page 133

G1030

Statement:

Use a standard GUI component library.

Rationale:

A predefined component library helps control cost and configuration. Licensing issues can be resolved before
development begins, and component costs are minimized by avoiding library overlap.

Now that component architecture is standard, it is possible to put together applications using a variety of
components from multiple vendors. These components are bundled in third-party toolkits that vastly extend the
range of options available in standard Windows or Java GUI toolkits. These toolkits are in common use and
possess a wide variety of pre-built components. Almost all support common look-and-feel (e.g., Windows or
Java).

Referenced By:

Design Tenet: Accommodate Heterogeneity
Thick Clients
Design Tenet: Open Architecture
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1030.1]

Does the user interface code use any other toolkits besides a Standard GUI Toolkit?

Procedure:

Check to make sure the thick-client code is developed using the Swing/AWT library in Java, and the standard,
included Windows Toolkit In .NET.

Example:

None

Part 2: Traceability

Page 134

G1032

Statement:

Validate all input fields.

Rationale:

Detect errors as close to point-of-data-entry as possible. This greatly enhances the end-user experience
and reduces frustration. This can be done by reducing the number of freeform text fields and using selection
mechanisms such as radio buttons, option boxes, pull down lists, maps, calendars, clocks, slider bars, and other
numeric validation entries.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Maintainability
Design Tenet: Accommodate Heterogeneity
Design Tenet: Enterprise Service Management
Presentation Tier
Human-Computer Interaction
Design Tenet: Open Architecture
Validate Input

Evaluation Criteria:

1) Test: [G1032.1]

Do the GUI screens use non-freeform text entry fields?

Procedure:

Scan the GUI code looking for the use of non-freeform text data entry mechanisms.

Example:

None.

Part 2: Traceability

Page 135

http://www.w3.org/

Part 2: Traceability

Page 136

G1043

Statement:

Separate formatting from data through the use of style sheets instead of hard coded HTML attributes.

Rationale:

Formatting information will be located in one location instead of scattered throughout each individual Web page of
a Web site. This makes a Web site more maintainable.

Referenced By:

Design Tenet: Accommodate Heterogeneity
Style Sheets
Design Tenet: Open Architecture
Maintainability
Browser-Based Clients
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1043.1]

Are any formatting attributes used in any of the HTML tags?

Procedure:

Search all Web pages and make sure there are no formatting attributes such as align, color, font, or size in any tags.

Example:

None

Part 2: Traceability

Page 137

G1044

Statement:

Comply with Federal accessibility standards contained in Section 508 of the Rehabilitation Act of 1973 (as
amended) when developing software user interfaces.

Rationale:

Applicable software must comply with Federal standards to enable better application use for those with disabilities.

Referenced By:

Design Tenet: Open Architecture
Design Tenet: Accommodate Heterogeneity
Design Tenet: Service-Oriented Architecture (SOA)
Maintainability
Designing User Interfaces for Accessibility

Evaluation Criteria:

1) Test: [G1044.1]

Do all Web document HTML, JSP, ASP, and CSS follow the Disability Act guidelines?

Procedure:

Check to make sure all Web documents follow the guidelines.

Use available validation tools to validate Section 508 accessibility and WAI accessibility. Go to http://
www.contentquality.com/Default.asp to validate the page.

Example:

None

http://www.contentquality.com/Default.asp
http://www.contentquality.com/Default.asp

Part 2: Traceability

Page 138

G1045

Statement:

Define XML format information separately in XSL.

Rationale:

XML documents should be free of any presentation information and should only contain data. Separating
presentation data from content allows multiple presentations for the same content data.

Referenced By:

Defining XML Schemas
Design Tenet: Service-Oriented Architecture (SOA)
XML Rendering
Reusability
Design Tenet: Accommodate Heterogeneity
Composeability
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1045.1]

Check for presentation information in XML documents?

Procedure:

Does the XML document contain only data?

If the XML document is not an document, does it contain presentation information?

Example:

None

Part 2: Traceability

Page 139

G1050

Statement:

In ASP, isolate the presentation tier from the middle tier using COM objects.

Rationale:

This is the best way to isolate the presentation tier from the middle tier in ASP.

Referenced By:

Active Server Pages (ASP)
Design Tenet: Service-Oriented Architecture (SOA)
Composeability
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1050.1]

Is all the middle tier code isolated from the presentation tier in ASP via COM?

Procedure:

Verify that ASP files do not contain middle-tier code. Instead, this code should be in COM objects referenced from the
ASP.

Example:

None

Part 2: Traceability

Page 140

G1052

Statement:

Use the code-behind feature in ASP.NET to separate presentation code from the business logic.

Rationale:

Separating presentation code from business logic allows the developers and content designers to work
independently. It also makes the code more maintainable because changes in the design elements or business
elements do not affect each other.

Referenced By:

Design Tenet: Open Architecture
Composeability
Design Tenet: Service-Oriented Architecture (SOA)
Active Server Pages for .NET (ASP.NET)
Maintainability

Evaluation Criteria:

1) Test: [G1052.1]

Is there code in ASP pages?

Procedure:

Check to make sure that ASP files have the code-behind attribute in the first line instead of embedded C# code in the
ASP.

Example:

None

Part 2: Traceability

Page 141

G1053

Statement:

Do not embed HTML code in any code-behind code used by aspx pages.

Rationale:

Intermixing VB or C# or C++ with presentation code (HTML) makes the code unnecessarily difficult to maintain by
both the developer and designer. This is similar in concept to Java's not embedding HTML code in servlets.

Referenced By:

Active Server Pages for .NET (ASP.NET)
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Maintainability

Evaluation Criteria:

1) Test: [G1053.1]

Check for HTML code in code-behind code.

Procedure:

Check the code-behind file (.aspx.vb for example) for any HTML tags.

Example:

None

Part 2: Traceability

Page 142

G1056

Statement:

Specify a versioning policy for .NET assemblies.

Rationale:

Versioning assemblies and configuring dependent assemblies allow the Common Language Runtime (CLR) to
load the proper assemblies at runtime for an application. This insulates the application from system configuration
changes.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Maintainability
Active Server Pages for .NET (ASP.NET)
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1056.1]

Does the application assembly have versioning information?

Procedure:

Check the application assembly manifest for versioning information.

Use the .NET configuration tool to check for versioning policy and versioning information.

Example:

None

Part 2: Traceability

Page 143

G1058

Statement:

Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

Rationale:

Separating data-layer code from presentation-layer code provides the ability to base multiple views on the same
model. This is especially important in the enterprise model because often, the user interface varies with the device
(browser, mobile phone, thick client, etc.).

Isolating different layers allows changes to occur in each layer without impacting other layers. For instance, if the
data layer (model) decides to switch databases, the changes are isolated to the data layer and do not affect the
view layer or controller layer.

Lastly, because MVC architecture enforces separation between presentation, processing, and data layer, this
allows functionality to be loosely coupled and therefore more suited for reuse.

Referenced By:

Design Tenet: Open Architecture
Maintainability
Reusability
Active Server Pages for .NET (ASP.NET)
Design Tenet: Accommodate Heterogeneity
Composeability
Active Server Pages (ASP)
Java Server Pages (JSP)
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1058.1]

Does the application use a Model 2 (MVC) pattern?

Procedure:

Check to see if all requests are being mapped to a single controller servlet.

Check that all page rendering are being done by a and not a .

Example:

None

2) Test: [G1058.2]

Does the application enforce clear separation between data layer (model), presentation layer (view), and middle/
business layer (controller)?

Part 2: Traceability

Page 144

Procedure:

Check to make sure the application presentation is not accessing the database directly.

Check to make sure the application data layer (model) is not implementing business logic (store procedures).

Check to make sure the middle/business layer (controller) does not contain presentation code. For example, make
sure servlets do not generate HTML.

Make sure access to the database is isolated to Data Access Object instead of proliferated throughout the middle
layer.

Example:

None

Part 2: Traceability

Page 145

G1060

Statement:

Encapsulate Java code that is used in JSP(s) in tag libraries.

Rationale:

Separating code from presentation allows developers and designers to work independently. It makes the code
reusable and more maintainable because it is defined in a tag library.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Composeability
Java Server Pages (JSP)
Maintainability
Reusability

Evaluation Criteria:

1) Test: [G1060.1]

Do the JSP pages use tag libraries?

Procedure:

Look through the JSP pages for embedded Java source code.

Example:

None

Part 2: Traceability

Page 146

G1071

Statement:

Use vendor-neutral interface connections to the enterprise (e.g., LDAP, JNDI, JMS, databases).

Rationale:

Increase portability and maintainability. Many of the newer connection mechanisms are vendor-neutral. Use these
instead of isolation design patterns or vendor-specific connection mechanisms.

Referenced By:

Design Tenet: Accommodate Heterogeneity
Maintainability
Design Tenet: Open Architecture
Interoperability
JNDI Security
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1071.1]

Is the connection mechanism vendor-neutral?

Procedure:

Examine the source code for vendor-specific imports or includes. Use only standard APIs.

Example:

None

Part 2: Traceability

Page 147

G1073

Statement:

Isolate vendor extensions to enterprise-services standard interfaces.

Rationale:

Vendor extensions are convenient but help create "vendor lock" and reduce vendor neutrality and migration. It is
best to avoid these extensions altogether. If that is not possible, then isolate them in an adapter or a wrapper-like
construct.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Design Tenet: Accommodate Heterogeneity
Interoperability
Maintainability
Publish and Insulate Public Interfaces

Evaluation Criteria:

1) Test: [G1073.1]

Are vendor extensions to enterprise services used?

Procedure:

Make sure that no vendor-specific code is included or imported except as part of an adapter or wrapper.

Example:

None

Part 2: Traceability

Page 148

G1078

Statement:

Document the use of non-Java EE-defined deployment descriptors.

Rationale:

Deployment descriptors that are not defined by the J2EE specification are not portable between application
servers. For example, BEA WebLogic has a vendor-specific deployment descriptor called weblogic-ejb-
jar.xml and JBoss has a vendor specific deployment descriptor called jboss-jar.xml .

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Interoperability
Design Tenet: Open Architecture
Java EE Environment

Evaluation Criteria:

1) Test: [G1078.1]

Are all the XML files that are not part of the Java EE specification identified in a delivered document?

Procedure:

Search all XML documents in the META-INF and WEB-INF directories and identify any XML files that are not defined
by Java EE. These files should be in a README or other delivered file that describes their purpose:

Example:

Web application WEB-INF/web.xml

EJB JAR META-INF/ejb-jar.xml

J2EE Connector META-INF/ra.xml

Client application META-INF/application-client.xml

Enterprise application META-INF/application.xml

Part 2: Traceability

Page 149

G1079

Statement:

Isolate tailorable data values into the deployment descriptors for Java EE applications.

Rationale:

Do not hard-code tailorable data into source files. The standard location for tailorable data for Java EE applications
is in deployment descriptors. Developers should not "reinvent the wheel" by creating a non-standard mechanism
for retrieving configurable data. Make tailorable data accessible through application contexts provided by the
application container (Java EE application server).

Referenced By:

Java EE Environment
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
JNDI Security

Evaluation Criteria:

1) Test: [G1079.1]

Is tailorable data configured using deployment descriptors?

Procedure:

Check the deployment descriptor for instances of tailorable data.

Example:

Name-value pairs such as environment variables configured using resource-env-ref elements.

JNDI locations configured using resource-ref elments.

Part 2: Traceability

Page 150

G1080

Statement:

Adhere to the Web Services Interoperability Organization (WS-I) Basic Profile specification for Web service
environments.

Rationale:

Most of the COTS Web service products have already met this requirement. This is intended to cause a rejection
of the non-standard Web server.

The WS-I Basic Profile specification is available from the Web Services Interoperability Organization Web site:
WS-I Org Basic Profile.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Interoperability
Web Services Compliance
Design Tenet: Open Architecture
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [G1080.1]

Is the Web service product WS-I Basic Profile specification compliant?

Procedure:

Identify the Web service product being used, and verify through a literature search that it is WS-I Basic Profile
specification compliant.

Example:

None

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

Part 2: Traceability

Page 151

G1082

Statement:

Use the document-literal style for all data transferred using SOAP where the document uses the World Wide Web
Consortium (W3C) Document Object Model (DOM).

Rationale:

The document-literal style requires defining the input and output parameters to a Web service as documents
that follow the W3C Document Object Model (DOM). The DOM acts as a contract between the producer and
the consumer of the Web service that is formal, well-defined, and rigorous. Validating the DOM against an XML
Schema Definition (XSD) can help resolve discrepancies in the interface.

Referenced By:

Design Tenet: Accommodate Heterogeneity
Maintainability
Web Services Compliance
SOAP
Design Tenet: Open Architecture
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Scalability

Evaluation Criteria:

1) Test: [G1082.1]

Does the WSDL define input, output, or returned parameters as Documents that follow the W3C Document Object
Model (DOM)?

Procedure:

Review all WSDL files used to describe a Web service, and make sure they only pass documents. Document types
should be xsd:anyType.

Example:

None

Part 2: Traceability

Page 152

G1083

Statement:

Do not pass Web Services-Interoperability Organization (WS-I) Document Object Model (DOM) documents as
strings.

Rationale:

Because of the relative simplicity of converting an XML document to a string, it is easy to pass an entire document
as a string rather than as an XML document. This can cause problems if the document contains tags that are
similar to the tags used in the SOAP. Passing it as an XML document ensures that the document is treated as a
single entity.

Referenced By:

Design Tenet: Accommodate Heterogeneity
Design Tenet: Open Architecture
Web Services Compliance
Design Tenet: Service-Oriented Architecture (SOA)
Maintainability

Evaluation Criteria:

1) Test: [G1083.1]

Does the WSDL define input, output, or returned parameters as strings?

Procedure:

Review all the WSDL files used to describe a Web service and make sure that they only pass documents, not strings.
Document types should be xsd:anyType.

Example:

None

Part 2: Traceability

Page 153

G1084

Statement:

Validate documents transferred using SOAP against the W3C XML Standard by an XML Schema Definition
(XSD) defined by the Community of Interest (COI).

Rationale:

Numerous COIs are defining data specific to their needs. Many are capturing the data exchange requirements
through XML schemas. COI information service definitions identify the appropriate schema. SOAP Web service
implementations per the COI should be faithful to these requirements. Use of COI schemas will minimize the risk to
interoperability.

For example, the Joint Air and Missile Defense (JAMD) COI is working in accordance with the DoD Network
Centric Data Strategy.

Referenced By:

SOAP
Interoperability
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Design Tenet: Accommodate Heterogeneity
WSDL

Evaluation Criteria:

1) Test: [G1084.1]

Has the Program adopted COI (Community of Interest) data schemas?

Procedure:

Check the DoD Metadata Registry for the COI schemas to compare to program WSDL references. Check code for
validation processing.

Example:

None

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

Part 2: Traceability

Page 154

G1085

Statement:

Establish a registered namespace in the XML Gallery in the DoD Metadata Registry for all DoD Programs.

Rationale:

A registered namespace permits unique identification and categorization of a Program which avoids name
collisions and conflicts. The DoD Net-Centric Data Strategy requires storing data products in shared spaces to
provide access to all authorized users and tagging these data products with metadata to enable discovery of
data by authorized users. The use of a unique registered namespace provides an absolute identifier to products
associated with a particular product and is an XSD schema requirement.

Referenced By:

Design Tenet: Open Architecture
Design Tenet: Service-Oriented Architecture (SOA)
Maintainability
WSDL
Using XML Namespaces
Interoperability

Evaluation Criteria:

1) Test: [G1085.1]

Does the Program have an assigned namespace in the DoD Metadata Registry?

Procedure:

Check the DoD Metadata Registry to determine whether program is associated with COI(s).

Example:

None

Part 2: Traceability

Page 155

G1087

Statement:

Validate all Web Services Definition Language (WSDL) files that describe Web services.

Rationale:

Manually editing a WSDL file is error-prone, work-intensive, and hard to maintain. However, if the user wants to do
it, there is no way to detect a manually edited file from one that was auto generated. The important thing is not how
the WSDL file is generated but rather that the WSDL file is valid. It must be validated with a WSDL validator.

Note: Not all WSDL files that are generated and valid are necessarily interoperable.

Referenced By:

Web Services
WSDL
Design Tenet: Accommodate Heterogeneity
Design Tenet: Open Architecture
Design Tenet: Service-Oriented Architecture (SOA)
Insulation and Structure

Evaluation Criteria:

1) Test: [G1087.1]

Can the WSDL file be validated?

Procedure:

Download a validation tool and test WSDL files.

Example:

Sample tools:

WS-I Organization: http://www.ws-i.org/deliverables/
workinggroup.aspx?wg=testingtools

Eclipse: http://dev.eclipse.org/viewcvs/indextech.cgi/wsvt-
home/main.html?rev=1.20

XMethods: http://xmethods.net/ve2/Tools.po

Pocket Soap: http://pocketsoap.com/wsdl/

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=testingtools
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=testingtools
http://dev.eclipse.org/viewcvs/indextech.cgi/wsvt-home/main.html?rev=1.20
http://dev.eclipse.org/viewcvs/indextech.cgi/wsvt-home/main.html?rev=1.20
http://xmethods.net/ve2/Tools.po
http://pocketsoap.com/wsdl/

Part 2: Traceability

Page 156

G1088

Statement:

Use isolation design patterns to define system functionality that manipulates Web services.

Rationale:

Insulating SOAP Web-service manipulation using standard abstraction patterns such as a proxy or adapter
insulates the software system from changes in the Web service interface and promotes maintainability.

Referenced By:

Web Services
SOAP
Design Tenet: Scalability
Design Tenet: Accommodate Heterogeneity
Insulation and Structure
Maintainability
Design Tenet: Open Architecture
Composeability
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1088.2]

Are Web service calls isolated in a single adapter or proxy object?

Procedure:

Check to see if all Web service calls are isolated to a single adapter or proxy object.

Example:

None

2) Test: [G1088.1]

Are Web service calls inside of the application code?

Procedure:

Check for proliferation of Web service calls inside an application.

Example:

None

3) Test: [G1088.3]

Are SOAP-client calls inside the application code?

Part 2: Traceability

Page 157

Procedure:

Check to see if SOAP-client code is proliferated inside the application code?

Example:

None

Part 2: Traceability

Page 158

G1090

Statement:

Do not hard-code a Web service's endpoint.

Rationale:

This causes unnecessary dependencies between the client code and the Web service that it uses.

Sometimes hard-coding may be unavoidable. For example, many tools provided by Web service vendors hard-
code the Web service's URL in the generated client-side helper classes.

Referenced By:

Design Tenet: Open Architecture
Maintainability
Web Services
Design Tenet: Accommodate Heterogeneity
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1090.1]

Are there any hard-coded URLs in the client-side code?

Procedure:

Parse the client code looking for hard-coded URLs.

Example:

The Java code samples below illustrate how this might be done. The first sample shows parameters that are hard-
coded; the second sample shows how parameters and Web service endpoints are insulated.

1. Hard-coded parameters:

// Sample code that has hard-coded parameters
// before applying insulation
public static void main
 (String[] args
) throws Exception
{ //The SOAP endpoint
 String sSoapEndpoint
 = "http://live.capescience.com:80"
 + "/ccx/AirportWeather";
 AirportWeatherClient myProxy = null;
 try
 { myProxy
 = AirportWeatherClientFactory.create
 (sSoapEndpoint);
 System.out.println
 ("Location: "
 + myProxy.getLocation(args[0])
);
 //rest of code removed for brevity
 } // End try
 Catch (Exception exception)

Part 2: Traceability

Page 159

 { System.out.println("Error: " + exception);
 } // End catch
};//end of main program

2. Insulated parameters and Web service endpoints

a. Property file - this code shows the property file itself:

c. Client sample code:

import java.io.*;
import java.rmi.*;
import java.util.*;
import AirportWeatherClient; // auto-generated SOAP
 // client from IDE */
public class WeatherProxy
 implements airportWeatherProxy
{
 //
 //code removed for brevity
 //
 public WeatherProxy
 (String propFileStr)
 { try
 { getEndPoint(propFileStr);
 } // End try
 catch(Exception e)
 { // Handle exception here
 } // End catch
 connect2SOAP();
 }// End constructor
 /* public api's */
 public String getLocation()
 { return location;
 } // End getLocation
 . . . // Other public API's removed for brevity
 private void getEndPoint
 (String propsFile)
 throws Exception
 { if (propsFile == null || propsFile.length() == 0)
 { throw new Exception
 ("SOAP EndPoint parameter not defined");
 } // End if
 props = new Properties();
 try
 { InputStream is = new FileInputStream(propsFile);
 props.load(is);
 is.close();
 } // End try
 catch (Exception exception)
 { throw new Exception
 ("can't read props file " + propsFile);
 } // End catch
 Enumeration enum = props.propertyNames();
 while (enum.hasMoreElements())
 { String endPointString = null;
 String propName = enum.nextElement().toString();
 if (propName.equals (endPointString))
 { soapEndpoint = props.getProperty(propName);
 break;
 } // end if
 } // End while
 }//end getEndPoint
 private void connect2SOAP()
 { try
 { myProxy
 = AirportWeatherClientFactory.create
 (soapEndpoint);
 . . . //code removed for brevity
 } // End try
 catch (Exception exception)
 { System.out.println

Part 2: Traceability

Page 160

 ("Error connecting to SOAP server: "
 + exception
);
 } // End catch
 } // End connect2SOAP
 private Properties props = null;
 private String propsFile = null;
 private AirportWeatherClient myProxy = null;
 private String soapEndpoint = null;
 private String location = null;
}//end WeatherProxy
public class Weather
{ private static WeatherProxy myWeatherProxy = null;
 public static void main
 (String[] args
) throws Exception
 { try
 { myWeatherProxy = new WeatherProxy (args[0]);
 } // End try
 Catch (Exception exception)
 { throw new Exception
 ("can't connect to SOAP server");
 } // End catch
 System.out.println
 ("Location: "
 + myWeatherProxy.getLocation()
);
 . . . //code deleted for brevity
 }//end main
}//end Weather

Part 2: Traceability

Page 161

G1093

Statement:

Implement exception handlers for SOAP-based Web services.

Rationale:

SOAP exceptions result when there are connectivity problems or violations in the SOAP protocol between the
client and the server.

Referenced By:

Interoperability
Error Handling
Design Tenet: Accommodate Heterogeneity
SOAP
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Enterprise Service Management
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1093.1]

Does the Web application client have exception handlers for SOAPExceptions.

Procedure:

Check to see that the Web application client has an exception block specifically for SOAPException.

Example:

None

2) Test: [G1093.2]

Does the Web application client test the SOAP response for a fault?

Procedure:

Verify the Web application client handles a true value returned from the response.generatedFault.

Example:

None

Part 2: Traceability

Page 162

G1094

Statement:

Catch all exceptions for application code exposed as a Web service.

Rationale:

Any exception can reveal system internals and thus compromise security. Also, internal exceptions are not user
friendly.

Referenced By:

Maintainability
Error Handling
Design Tenet: Enterprise Service Management
Handle Exceptions

Evaluation Criteria:

1) Test: [G1094.2]

Does each exposed Web method catch all possible runtime exceptions and re-throw a declared application runtime
exception?

Procedure:

Verify that each exposed Web method has an exception block that catches all possible exceptions and then re-throws
them as a declared application exceptions.

Example:

None

2) Test: [G1094.1]

Does each exposed Web method catch all possible exceptions and re-throw a declared application exception?

Procedure:

Verify that each exposed Web method has an exception block that catches all possible exceptions and then re-throws
them as a declared application exceptions.

Example:

None

Part 2: Traceability

Page 163

G1095

Statement:

Use W3C fault codes for all SOAP faults.

Rationale:

Having predefined and accepted fault codes allows consumers to handle SOAP faults appropriately without prior
knowledge of custom fault codes.

Referenced By:

SOAP
Design Tenet: Open Architecture
Error Handling
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity
Maintainability
Design Tenet: Enterprise Service Management

Evaluation Criteria:

1) Test: [G1095.1]

Does the Web application throw fault codes from the accepted list of fault codes?

Procedure:

Verify that each fault code thrown by the Web application is from the accepted list of SOAP fault codes defined by the
W3C.

Example:

None

Part 2: Traceability

Page 164

G1101

Statement:

Use Web services to bridge Java EE and .NET.

Rationale:

The easiest and best way to bridge Java EE and .NET is to define a Web service.

There are other ways to bridge Java EE and .NET using COTS products. If used, these should follow the ANSI
Abstract Syntax Notation One (ASN.1) standard (http://asn1.elibel.tm.fr/en/standards/index.htm#asn1).

ASN.1 is a formal notation for describing data transmitted by telecommunications protocols. It applies regardless
of language implementation, physical representation of this data, application, and degree of complexity (http://
asn1.elibel.tm.fr/en/introduction/index.htm).

Referenced By:

.NET Framework
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Design Tenet: Accommodate Heterogeneity
Interoperability

Evaluation Criteria:

1) Test: [G1101.1]

Are Java and .NET files in the project?

Procedure:

Look for files with the .java, .class, .obj, .cs, .cc, or .c extensions existing with the source code.

Example:

None

http://asn1.elibel.tm.fr/en/standards/index.htm#asn1
http://asn1.elibel.tm.fr/en/introduction/index.htm
http://asn1.elibel.tm.fr/en/introduction/index.htm

Part 2: Traceability

Page 165

G1118

Statement:

Localize CORBA vendor-specific source code into separate modules.

Rationale:

The general guidance is to minimize CORBA vendor-specific source code, while recognizing that vendor-specific
features are necessary in certain circumstances. However, isolating vendor-specific code reduces maintenance
effort.

Vendor capabilities tend to change more rapidly than CORBA-standard specifications. Experience shows that
vendor updates frequently require modification to application source code, due to changing vendor interface
conventions. These modifications impose vendor-version-specific constraints on the application, thereby
complicating maintenance.

Example

Encapsulating CORBA ORB operations

The following examples show how to encapsulate binding operations for a C++ ORB, and naming service
operations for a Java ORB.

C++ ORB binder template

The code below shows a sample template for binding to the C++ ORB. IONA's ORBIX was used in this
example.

/* ==
ServerBinder.h (Template)
this is a generic binder to ORBIX
== */
#ifndef _BINDER_H_
#define _BINDER_H_
#ifndef IOSTREAM_H
#define IOSTREAM_H
#include <iostream.h>
#endif
#ifndef STDLIB_H
#define STDLIB_H
#include <stdlib.h>
#endif
template <class SERVERNAME, class VARPTR>
class Binder
{ private:
 char* serverName;
 public:
 Binder(char* svName):serverName(svName){};
 ~Binder(){};
 int bind(VARPTR* p)
 { int attempts = 0, success = 0;
 int maxtries = 5, retval = 0;
 while ((attempts < maxtries)
 && (!success)
)
 { ++attempts;
 cout << "Binding to server, attempt "
 << attempts
 << endl;
 try
 { (*p) = SERVERNAME::_bind();

Part 2: Traceability

Page 166

 cout << "Bound to server"
 << endl;
 success = retval = 1;
 } // End try
 catch (CORBA::SystemException &systemException)
 { cout << "SystemException, ServerBinder::bind"
 << endl
 << systemException;
 success = 1;
 retval = 0;
 } // End catch SystemException
 catch (...)
 { cout << "unknown Exception, ServerBinder::bind"
 << endl;
 success = 1;
 retval = 0;
 } // End catch all
 } //end while
 return retval;
 } //end bind
} //end Binder
#endif

Ada ORB binder template for C++

The code below shows a C++ template for binding to an Ada ORB. ORBexpress was used in this example.

/* ==
ada_binder.h (Template)
this is a generic binder to ORBExpress
== */
#ifndef _ADA_BINDER_H_
#define _ADA_BINDER_H_
#ifndef IOSTREAM_H
#define IOSTREAM_H
#include <iostream.h>
#endif
#ifndef STDLIB_H
#define STDLIB_H
#include <stdlib.h>
#endif
template <class SERVERNAME, class VARPTR >
class Ada_Binder
{ private:
 char* adaIorString;
 public:
 Ada_Binder
 (char* iorString)
 : adaIorString (iorString)
 {};
 ~Ada_Binder(){};
 int bindToAda(VARPTR* p)
 { int attempts = 0, success = 0;
 int maxtries = 5, retval = 0;
 while ((attempts < maxtries)
 && (!success)
)
 { ++attempts;
 cout << "Binding to server, attempt "
 << attempts
 << endl;
 try
 { cout <<"adaIorString:"
 << endl
 << adaIorString
 << endl;
 (*p) = SERVERNAME::_bind(adaIorString);
//can't use string_to_object in this version
//it kills the ada IOR
// CORBA::Object_ptr myptr
 CORBA::Orbix.string_to_object
 (adaIorString);

Part 2: Traceability

Page 167

// (*p) = SERVERNAME::_narrow(myptr);
 cout << "Bound to server" << endl;
 success = retval = 1;
 } // End try
 catch (CORBA::SystemException& systemException)
 { cout << "SystemException, "
 << "AdaServerBinder::bind"
 << endl
 << systemException;
 success = 1;
 retval = 0;
 } // End SystemException
 catch (...)
 { cout << "Unknown Exception, "
 << "AdaServerBinder::bind"
 << endl;
 success = 1;
 retval = 0;
 } // End catch all
 } // end while
 return retval;
 } // end bind
} // end ADA_Binder
#endif

Example

Naming service operations for a Java ORB

Java helper class

This example is a helper class, JavaNamingHelper.java, that encapsulates CORBA naming service
operations for all services to use. We used Java JDK 1.4 ORB to create this example.

import java.util.*;
import org.omg.CORBA.*;
import org.omg.CORBA.ORB.*;
import org.omg.CORBA_2_3.ORB.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContext.*;
import org.omg.CosNaming.NamingContextPackage.*;
import CBRNSensors.JSLSCAD.*;
public class JavaNamingHelper
{ static NamingContext nameSvc = null;
 static org.omg.CORBA.Object objref = null;
 static JSLSCADSensor myCBRNSensor = null;
 static org.omg.CORBA.Object myobj = null;
 public JavaNamingHelper()
 {
 }
 private static void showNamingContext
 (org.omg.CORBA.ORB myorb)
 {
 public static NamingContext getNamingSvc
 (org.omg.CORBA.ORB lclorb,
 String nameSvcName
)
 { NamingContext lclNameSvc = null;
 try
 { org.omg.CORBA.Object nameSvcObj
 = lclorb.resolve_initial_references
 ("NameService");
 // . . . other business logic removed
 // for brevity
 } // End try
 catch(org.omg.CORBA.COMM_FAILURE cf)
 { . . . // error code goes here
 } // End cstch
 catch (org.omg.CORBA.ORBPackage.InvalidName invalidName)

Part 2: Traceability

Page 168

 { . . . // error code goes here
 } // End catch
 catch (SystemException systemException)
 { . . .// error code goes here
 }
 } // End getNamingSvc
 public static org.omg.CORBA.Object getObjFromNameSvc
 (org.omg.CORBA.ORB myorb,
 String targetSensorName
)
 { . . . // business logic goes here
 } //end getObjFromNameSvc
 public static int setObj2NameSvc
 (org.omg.CORBA.ORB myorb,
 BasesSensor mySensor,
 String targetSensorName
)
 {. . . // business logic goes here
 }//end setObj2NameSvc
}; //end class JavaNamingHelper

Java server implementation

The code below is a sample Java server implementation that uses the naming service helper class.

import java.io.*;
import java.util.*;
import org.omg.CORBA.*;
import org.omg.CORBA.ORB.*;
import org.omg.CORBA_2_3.ORB.*;
import org.omg.PortableServer.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContext.*;
import org.omg.CosNaming.NamingContextPackage.*;
class MyServer
{ public static Properties props;
 public static ORB myorb = null;
 public static NamingContext nameSvc = null;
 public static RootSensor mySensor = null;
 public static String propertyFilePath = null;
 public static final String MY_SENSOR_NAME = "MYSENSOR";
 static public void main(String[] args)
 { // handle arguments
 System.out.println(" CORBA Server starting...\n");
 try
 { // Initialize the ORB.
 myorb = ORB.init(args, props);
 //instantiate servant and create ref
 POA rootPOA
 = POAHelper.narrow(myorb.resolve_initial_references
 ("RootPOA");
 . . . // rest of initialization code goes here
 } // End try
 catch (org.omg.CORBA.ORBPackage.InvalidName invalidName)
 { . . . //error code goes here
 } // End invalidName
 // other exception types to catch go here
 catch (SystemException systemException)
 { System.err.println (systemException);
 } // End systemException
 // naming service hookup
 JavaNamingHelper.setObj2NameSvc
 (myorb,mySensor,
 MY_SENSOR_NAME
);
 try
 { System.out.println(" Ready to service requests\n");
 myorb.run();
 } // End try
 catch(SystemException systemException)
 { System.err.println (systemException);
 } // End catch systemException

Part 2: Traceability

Page 169

 } // End static block
} // End MyServer

Java client implementation

The code below is a sample client implementation that uses the naming service helper class.

Referenced By:

Design Tenet: Open Architecture
CORBA
Maintainability
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1118.2]

Are any non-CORBA compliant CORBA:: objects declared or defined in the module?

Procedure:

Review the code for a service that can be used to obtain configuration.

Example:

None

2) Test: [G1118.1]

Does the module contain vendor names anywhere in code text?

Procedure:

Review the code looking for a service that can be used to obtain configuration.

Example:

None

Part 2: Traceability

Page 170

G1119

Statement:

Isolate user-modifiable configuration parameters from the CORBA application source code.

Rationale:

Configuration parameters control the behavior of the CORBA ORB service environment and client/service
processes during startup, execution, and termination. This parameterization allows execution-time control
modification without having to rebuild, reinstall, or redeploy.

Configuration defines the state of the client-and-service environment throughout the lifetime of the processes
involved. This relates to considerations such as the allocation of threading and resources, POA policies, the
instantiation of servants and their invocations, failure and security behavior, connection management, quality
of service prioritization, and so forth. The point is that CORBA provides an extremely complex but flexible
environment for distributed computing interaction. Consequently, the designer requires flexible guidance to handle
this option-rich environment.

Configuration processes and their related parameters fall into two categories. The first involves configuration
matters, which are defined to be perpetually static by the system architecture. The second involves matters that
are intended to be modifiable by users.

The first category, immutable configuration settings, relates to fundamental underlying assumptions that are
foundational for the implementation. These are matters for which no user modification is ever intended as it
would lead to unspecified behavior. Consider the example of a service implementation that is programmed to
be single threaded. In this case, multi-threading controls are irrelevant and multiple instantiation would lead to
dangerous confusion. For immutable configuration parameters, localized and well-commented implementation in
the application source code is appropriate.

For user-modifiable configuration settings, there are two further by-design divisions. The first involves configuration
settings that are intended to be accessible by distributed processes. The second involves host-specific settings
which relate to resources locally available, for which remote access is not desired. These are discussed in the
related sublevel guidance

Referenced By:

CORBA
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1119.1]

See G1204.

Procedure:

Example:

2) Test: [G1119.2]

See G1205 .

Part 2: Traceability

Page 171

Procedure:

Example:

Part 2: Traceability

Page 172

G1121

Statement:

Do not modify CORBA Interface Definition Language (IDL) compiler auto-generated stubs and skeletons.

Rationale:

The purpose of the IDL auto-generated stub and skeleton files is to provide a source code facility/mechanism
for the developer in a specific language to use the IDL-described object interface in that specific language. The
internal content of these files changes with the application's IDL modification, with IDL compiler-environment
configuration settings, and with vendor-product compiler and ORB upgrades. By design, these files are not
intended to be modified by the application developer. Developer modification of any auto-generated stub or
skeleton file will typically lead to very severe maintenance hazards and failed application rebuild results.

The stub files describe the language source-code interface from the client side. Their use involves including the
client stub header in the application's call invocation code.

The skeleton files describe the language source code interface from the service implementation side. Their
use involves including the skeleton header in the application's operator implementation code. Their use also
requires developer modification of a renamed clone of the auto-generated skeleton body file. These techniques are
described in every ORB vendor's programming reference manuals.

Referenced By:

Design Tenet: Open Architecture
Maintainability
Design Tenet: Service-Oriented Architecture (SOA)
CORBA

Evaluation Criteria:

1) Test: [G1121.1]

Is any application code contained in the auto-generated code?

Procedure:

Inspect the auto-generated file creation/modification dates to verify that no tampering occurred after the IDL
compilation step in the build process.

Example:

The following examples are all based upon a single CORBA IDL interface.

MyIdlInterface.idl

interface MyIdlInterface
{
 readonly attribute string version;
 void stop();
 void start();
 string error();
}; // End MyIdlInterface

ORBExpress compiler

Part 2: Traceability

Page 173

The ORBExpress IDL compiler generates these files:

• myIdlInterface.h - Client-side stub header

• myIdlInterface.cxx - Client-side stub implementation

• MyIdlInterface_s.h - Abstract servant header

• MyIdlInterface_s.cxx - Abstract servant implementation

• MyIdlInterface_impl.h - Server implementation header

• MyIdlInterface_impl.cxx - Server implementation implementation

Note: The only files that should be edited are MyIdlInterface_impl.h and MyIdlInterface_impl.cxx .
The IDL compiler checks for the existence of the implementation (i.e. _impl) files and will not overwrite them.

MyIdlInterface_impl.cxx

// Generated for interface MyIdlInterface
// in myIdlInterface.idl
#include "MyIdlInterface_impl.h"
MyIdlInterface_impl::MyIdlInterface_impl
 (PortableServer::POA* oe_poa,
 const char* oe_object_id
) : POA_MyIdlInterface
 (oe_object_id,
 oe_poa
)
{ . . . // TO DO: add implementation code here
} // emd constructor
MyIdlInterface_impl::MyIdlInterface_impl
 (const MyIdlInterface_impl& obj)
 : POA_MyIdlInterface(obj)
{ . . . // TO DO: add implementation code here
} // End constructor
MyIdlInterface_impl::~MyIdlInterface_impl()
{ . . . // TO DO: add implementation code here
} // End destructor
CORBA::Char* MyIdlInterface_impl::version
 (CORBA::Environment& _env)
{ return CORBA::string_dup(_version);
} // End version
void MyIdlInterface_impl::stop
 (CORBA::Environment& _env)
{ . . . // TO DO: add implementation code here
} // End stop
void MyIdlInterface_impl::start
 (CORBA::Environment& _env)
{ . . . // TO DO: add implementation code here
} // End start
CORBA::Char* MyIdlInterface_impl::error
 (CORBA::Environment& _env)
{ CORBA::Char* result;
 . . . // TO DO: add implementation code here
 return result;
} // End error

Java JDK compiler

The Java JDK IDL compiler generates these files:

• MyIdlInterface.java

• MyIdlInterfaceHelper.java

Part 2: Traceability

Page 174

• MyIdlInterfaceHolder.java

• MyIdlInterfaceOperations.java

• MyIdlInterfacePOA.java

• _MyIdlInterfaceStub.java

MyIdlInterfacePOA.java

/**
 * MyIdlInterfacePOA.java .
 * Generated by the IDL-to-Java compiler
 * (portable), version "3.1"
 * from myIdlInterface.idl
 */
public abstract class MyIdlInterfacePOA
 extends org.omg.PortableServer.Servant
 implements MyIdlInterfaceOperations,
 org.omg.CORBA.portable.InvokeHandler
{ . . . // rest of the auto-generated code removed for brevity
} // End MyIdlInterfacePOA

MyIdlInterfaceImpl.java

package myIdlImpl;

Part 2: Traceability

Page 175

G1123

Statement:

Use the Fat Operation Technique in IDL operator invocation.

Rationale:

This reduces the CORBA messaging overhead. The performance cost of network CORBA messaging is
determined by two factors: latency and marshaling rate. Call latency is the minimum cost of sending any message
at all. The marshaling rate is determined by the sizes of sending and receiving parameters and of return values.

In the situation of a large number of objects involving objects that hold a small amount of stat, the call latency
cost far exceeds the marshalling costs. Taking advantage of this reality, the "Fat Operation Technique" involves
constructing structure objects which hold an aggregation of related attributes, and using the resulting structures in
operation invocation parameters and returns. This amounts to transferring a larger amount of information with each
network transaction.

For more information, see "Advanced CORBA Programming with C++" by Henning & Vinoski, 1999 Addison
Wesley, Chapter 22.

Referenced By:

CORBA
Design Tenet: Scalability
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1123.1]

Does the IDL contain function calls which have structure objects that are passed as parameters or returned from
operators?

Procedure:

Inspect the IDL file and manually check for parameters or returns using objects defined as structures, and verify that
they are passed from methods also declared in the IDL.

Example:

None

Part 2: Traceability

Page 176

G1125

Statement:

Use the Department of Defense Metadata Specification (DDMS) for standardized tags and taxonomies.

Rationale:

These standardized tags or Metacards will be developed, maintained, and placed under configuration as
appropriate and will comply with the DDMS and COI guidance. These include specifications defining the tagging
for security classification and dissemination control. See the DoD Discovery Metadata Specification Web site
(http://metadata.dod.mil/mdr/irs/DDMS/) for the current DDMS standards.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Make Data Visible
Design Tenet: Provide Data Management
Design Tenet: Open Architecture
Metadata Registry
Design Tenet: Accommodate Heterogeneity
Interoperability

Evaluation Criteria:

1) Test: [G1125.1]

Has the Program documented the profile used for published data assets in accordance with guidance?

Procedure:

Check the DoD Metadata Registry to determine whether the program is associated with COI(s).

Example:

None

http://metadata.dod.mil/mdr/irs/DDMS/

Part 2: Traceability

Page 177

G1127

Statement:

Use a UDDI specification that supports publishing discovery services.

Rationale:

UDDI provides a registration for services, and the OASIS UDDI 2.0 specification has become a standard method
for publishing discovery services.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Universal Description, Discovery, and Integration (UDDI)
Design Tenet: Accommodate Heterogeneity
Interoperability

Evaluation Criteria:

1) Test: [G1127.1]

Are the Web services registered in a UDDI registry?

Procedure:

Verify the registration in the UDDI registry.

Example:

None

2) Test: [G1127.2]

Is the registry UDDI 2.0 or higher?

Procedure:

Determine if the particular UDDI registry is UDDI Version 2.0 or higher.

Example:

None

Part 2: Traceability

Page 178

G1131

Statement:

Use industry standard Universal Description, Discovery, and Integration (UDDI) APIs for all UDDI inquiries.

Rationale:

There is a standard API that uses SOAP messages to communicate with the UDDI registry. To increase
compatibility and portability, use this API exclusively.

Referenced By:

Design Tenet: Open Architecture
Interoperability
Design Tenet: Service-Oriented Architecture (SOA)
Universal Description, Discovery, and Integration (UDDI)
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [G1131.1]

Are all the interfaces to the UDDI registry made using the UDDI standard API?

Procedure:

The standard API for UDDI is SOAP based. Requests and responses are passed using documents. Test the traffic
flow between the client and the UDDI registry for messages that are defined in the UDDI specification. Use standard
libraries to send and receive the messages (e.g., JUDDI for Java).

Checking for the use of packages like JUDDI does not require the application to be running.

Example:

The following is an example as provided in the UDDI API reference: http://uddi.org/pubs/ProgrammersAPI-V2.04-
Published-20020719.htm#_Toc25137712 .

find_binding

The find_binding API call returns a bindingDetail message that contains zero or more binding Template structures
matching the criteria specified in the argument list.
Syntax

Syntax

Arguments

serviceKey This uuid_key is used to specify a particular
instance of a businessService element in
the registered data. Only bindings in the
specific businessService data identified by
the serviceKey passed will be searched.

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137712
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137712

Part 2: Traceability

Page 179

maxRows This optional integer value allows the
requesting program to limit the number of
results returned.

findQualifiers This optional collection of findQualifier
elements can be used to alter the default
behavior of search functionality. See the
findQualifiers appendix for more information.

tModelBag This is a list of tModel uuid_key values
that represents the technical fingerprint
of a bindingTemplate structure contained
within the businessService specified by the
serviceKey value. Only bindingTemplates
that contain all of the tModel keys specified
will be returned (logical AND). The order of
the keys in the tModel bag is not relevant.

Returns

This API call returns a bindingDetail message upon success. In the event that no matches were located for the
specified criteria, the bindingDetail structure returned will be empty (i.e., it contains no bindingTemplate data.)
This signifies a zero match result. If no arguments are passed, a zero-match result set will be returned.
In the event of an overly large number of matches (as determined by each Operator Site), or if the number
of matches exceeds the value of the maxRows attribute, the Operator site will truncate the result set. If this
occurs, the response message will contain the truncated attribute with the value "true".

Caveats

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller within a
SOAP Fault. The following error number information will be relevant:

E_invalidKeyPassed This signifies that the uuid_key value passed
did not match with any known serviceKey or
tModelKey values. The error structure will
signify which condition occurred first, and the
invalid key will be indicated clearly in text.

E_unsupported This signifies that one of the findQualifier
values passed was invalid. The invalid
qualifier will be indicated clearly in text.

Part 2: Traceability

Page 180

G1132

Statement:

Implement the data tier using commercial off-the-shelf (COTS) relational database management system
(RDBMS) products that implement the SQL standard.

Rationale:

COTS RDBMS products are technically mature, and their capabilities are continually expanding (to include
capabilities such as row-level locking, stored procedures, triggers, and high-level language interfaces). Moreover,
there is a large technical community able to develop and maintain data systems based on these products. It is
likely that a COTS RDBMS will provide many of the data tier capabilities a developer requires.

Referenced By:

Design Tenet: Open Architecture
Maintainability
Design Tenet: Enterprise Service Management
Database Implementations
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity
Interoperability

Evaluation Criteria:

1) Test: [G1132.1]

Is the proposed COTS RDBMS product a readily available and supportable COTS product that implements the SQL
standard?

Procedure:

Verify that the COTS RDBMS product is widely in use in the DoD environment (e.g., Oracle, SQL Server, or DB2), has
a large support community, and is likely to be supported for the lifecycle of the project.

Example:

None

Part 2: Traceability

Page 181

G1141

Statement:

Use standard data models developed by Communities of Interest (COI) as the basis of program or project data
models.

Rationale:

Standard data models are under development in many areas of the DoD and will be stored in and made available
from DoD metadata repositories. The use of these models or portions thereof supports interoperability among
applications. The C2IEDM data model, used in the Command and Control area, is an example of one of these
standard data model development efforts.

Referenced By:

Database Development
Design Tenet: Service-Oriented Architecture (SOA)
Reading/Writing Objects within a DDS Domain
Design Tenet: Accommodate Heterogeneity
Interoperability
Data Modeling
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1141.2]

If the system is a command-and-control application, has preference been given to the use of the Command & Control
Information Exchange Data Model (C2IEDM) rather than locally defined values?

Procedure:

Examine the system data model and verify that the C2IEDM data model has been incorporated.

Example:

None

2) Test: [G1141.1]

Have standard data models been considered for use in the system?

Procedure:

Determine whether standard DoD data models exist for the technical areas accommodated in the system
requirements. Verify that data model the developed for the application accommodates the use of these data models.

Example:

None

Part 2: Traceability

Page 182

G1144

Statement:

Develop two-level database models: one level captures the conceptual or logical aspects, and the other level
captures the physical aspects.

Rationale:

There are a number of modeling tools available that support entity-relationship diagram (ERD) development.
Developers can use these tools to create conceptual/logical models that are independent of the DBMS in
which the system is implemented and to develop the physical models that are translated directly into data
definition language (DDL), the SQL code used to create the database. Using a conceptual/logical model permits
implementation or reuse of a complex ERD on multiple DBMS products.

Referenced By:

Design Tenet: Open Architecture
Reusability
Data Modeling
Database Development
Design Tenet: Service-Oriented Architecture (SOA)
Composeability

Evaluation Criteria:

1) Test: [G1144.1]

Have separate conceptual/logical and physical models been developed?

Procedure:

Verify the presence of a conceptual/logicalmodel0 and a physical model.

Example:

None

Part 2: Traceability

Page 183

G1146

Statement:

Include information in the data model necessary to generate a data dictionary.

Rationale:

A data dictionary is an integral part of every system including databases. A description of each data item and
the units in which the contents are measured are essential. Data modeling tools provide a mechanism for storing
information necessary to produce a data dictionary.

Referenced By:

RDBMS Internals
Reading/Writing Objects within a DDS Domain
Design Tenet: Service-Oriented Architecture (SOA)
Maintainability

Evaluation Criteria:

1) Test: [G1146.1]

Does the data model include description information?

Procedure:

Examine the physical data model.

Example:

None

Part 2: Traceability

Page 184

G1147

Statement:

Use domain analysis to define the constraints on input data validation.

Rationale:

Domain analysis is an integral part of any data system including databases. Domains describe the set or range of
values that are acceptable for a specific data item. These include, at a minimum the following:

• Data type

• Precision

• Minimum

• Maximum

• Length

These values are used to validate the data.

In the database, the range checking is done via check constraints on the data item. These check constraints are
generated from the physical data model as part of the DDL.

Referenced By:

Database Development
Data Modeling
Design Tenet: Service-Oriented Architecture (SOA)
Reading/Writing Objects within a DDS Domain
Maintainability
Validate Input

Evaluation Criteria:

1) Test: [G1147.1]

Does the data model include include constraints derived from domain analysis?

Procedure:

Examine the physical data model.

Example:

None

Part 2: Traceability

Page 185

G1148

Statement:

Normalize data models.

Rationale:

Normalization is a central tenet of relational database theory. It is also part of OOA.

A database should usually be normalized to at least third normal form. Although there are seven normal forms,
normalization beyond third normal form is rarely considered in practical database design.

Objects developed in the absence of data normalization are prone to unnecessary complexity required to keep
multiply copies of data.

Referenced By:

Reading/Writing Objects within a DDS Domain
Database Development
Maintainability
Data Modeling
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1148.1]

Is the database design in third normal form?

Procedure:

Examine the conceptual/logical data model.

Example:

None

Part 2: Traceability

Page 186

G1151

Statement:

Define declarative foreign keys for all relationships between tables to enforce referential integrity.

Rationale:

Foreign Key constraints enforce referential integrity. The principle of referential integrity requires that the foreign
key values of a child table are either null or match exactly those of the primary key in the parent table.

Referenced By:

Database Development
Design Tenet: Service-Oriented Architecture (SOA)
RDBMS Internals
Maintainability

Evaluation Criteria:

1) Test: [G1151.1]

Have foreign-key constraints been incorporated into the database?

Procedure:

Examine the database to determine whether foreign-key constraints have been included in the database creation
scripts and created in the database.

Example:

None

Part 2: Traceability

Page 187

G1153

Statement:

Separate application, presentation, and data tiers.

Rationale:

Separation into tiers allows for the separate maintenance of each tier as long as the interface between tiers does
not change. It also allows for multiple implementations of a layer to meet
different requirements. This supports technology refresh and certain requirements changes.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Maintainability
Design Tenet: Scalability
RDBMS Internals
Composeability
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [G1153.1]

Does the program, project or initiative architecture support clear boundaries between application layers, e.g. data,
presentation, and business logic layers.

Procedure:

Examination of the program, project or initiative architecture and evaluate the degree to which it supports clear
boundaries between applications layers such as data, and presentation layers.

Verify that the system design accommodates a multi-tier architecture.

Example:

The use of web services is one means of separating the presentation layer from business logic and data layers.

Part 2: Traceability

Page 188

G1154

Statement:

Use stored procedures for operations that are focused on the insertion and maintenance of data.

Rationale:

Current software design methodologies and architectures call for the implementation of an n-tiered architecture
with business rules in the middle tier and data stored in a separate data tier. When multiple applications access
a common database, however, the rules may be best located at the data-tier level. Otherwise, changes in one
application would have to be coordinated across all applications.

Referenced By:

RDBMS Internals
Design Tenet: Service-Oriented Architecture (SOA)
Maintainability
Design Tenet: Make Data Trustable

Evaluation Criteria:

1) Test: [G1154.1]

Are database triggers used?

Procedure:

Check for stored procedures that are triggered on insertion, deletion, and update events.

Example:

CREATE TRIGGER PersonCheckAge
AFTER INSERT OR UPDATE OF age
ON Person
FOR EACH ROW
BEGIN
 IF (:new.age < 0) THEN
 RAISE_APPLICATION_ERROR
 (-20000,
 'no negative age allowed'
);
 END IF;
END;.

Part 2: Traceability

Page 189

G1155

Statement:

Use triggers to enforce referential or data integrity, not to perform complex business logic.

Rationale:

Triggers are fired on events. Current software design methodologies and architectures call for the implementation
of an n-tiered architecture with business rules in the middle tier and data stored in a separate data tier.
Implementing business logic in triggers, as well as in the middle tier, violates this concept.

Referenced By:

Composeability
Design Tenet: Make Data Trustable
Design Tenet: Service-Oriented Architecture (SOA)
RDBMS Internals
Design Tenet: Enterprise Service Management

Evaluation Criteria:

1) Test: [G1155.1]

Has business logic been incorporated into database triggers?

Procedure:

Examine the database trigger code to determine whether business logic or calls to stored procedures incorporating
business logic have been coded into them.

Example:

None

Part 2: Traceability

Page 190

G1190

Statement:

Use a build tool.

Rationale:

A build tool allows for the encapsulation of building instructions into machine-readable files or sets of files. The
instructions can be successfully and consistently repeated.

Referenced By:

Design Tenet: Open Architecture
Design Tenet: Service-Oriented Architecture (SOA)
Automate the Software Build Process

Evaluation Criteria:

1) Test: [G1190.1]

Does the program or project use a build tool?

Procedure:

Identify which build tool the program or project is using.

Example:

None.

Part 2: Traceability

Page 191

G1202

Statement:

Use the CORBA Portable Object Adapter (POA) instead of the Basic Object Adapter (BOA).

Rationale:

The CORBA Basic Object Adapter (BOA) was the CORBA Version 1 specification for the client-server object
capability. The BOA specification was found to be so incomplete that vendor-specific interpretations were
required for operable implementation. In CORBA Version 2, the Portable Object Adapter (POA) was significantly
more complete and flexible. In the current marketplace, POA implementations are standard and, in quality
implementations, are not vendor-specific. Consequently, using POA eliminates one significant area of vendor-
specific coding.

BOA POA

• Focuses on CORBA server
implementations and not CORBA object
implementations

• Naming convention issues on server side

• Tightly coupled to ORB implementation

• Non-standardized way to connect to ORB

• Four activation models for server
processes

• Services for lifecycle management

• Abstract layer between ORB and object

• Standard, portable interface for
communicating with ORB runtime

• Two servant incarnation styles

Referenced By:

Interoperability
Maintainability
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Design Tenet: Accommodate Heterogeneity
Composeability
CORBA

Evaluation Criteria:

1) Test: [G1202.1]

Does any CORBA application code reference the CORBA::BOA identifier.

Procedure:

Review the code for the use of the CORBA::BOA identifier.

Part 2: Traceability

Page 192

Example:

BOA Coding Example

Client Side

The code below shows a C++ CORBA client BOA initialization for the ORBIX ORB. Other ORB vendors may
have different initialization sequences.

int main
 (int argc,
 char **argv
)
{ MyServer_var MyVar;
 CORBA::ORB_ptr myOrbPtr
 = CORBA::ORB_init(argc, argv,"Orbix");
 try
 { // The default is the local host:
 MyVar = MyServer::_bind(":ServerName");
 } // End try
 catch (CORBA::SystemException &sysEx)
 { cerr << "Unexpected system exception" << endl;
 cerr <<&sysEx;
 exit(1);
 } // End CORBA::SystemException
 catch(...)
 { // an error occurred while trying
 // to bind to the grid object.
 cerr << "Bind to object failed" << endl;
 cerr << "Unexpected exception " << endl;
 exit(1);
 } // End catch ...
} // End main

Server Side

Use the code below as a model. This example shows a C++ CORBA server BOA init for the ORBIX ORB. For
BOA, other ORBS will have a different initialization sequence.

try
{ MyObject::myOrb_
 = CORBA::ORB_init(argc, argv, "Orbix");
 MyObject::myboa_
 = MyObject::myOrb_->BOA_init(argc, argv, "Orbix_BOA");
} // End try
catch (CORBA::SystemException &sysEx)
{ //some exception handling code
} // End catch
try
{ NoeLoggerCfg::myboa_->impl_is_ready("MyServiceName",
 CORBA::ORB::INFINITE_TIMEOUT);
} // End try
catch (CORBA::SystemException &sysEx)
{ //exception handling code
}

POA Coding Example

Client Side

This example shows a C++ CORBA client POA init for the ORBIX ORB. For BOA, other ORBS will have a
different initialization sequence.

Part 2: Traceability

Page 193

int main
 (int argc,
 char **argv
)
{ CORBA::ORB_var myOrb = CORBA::ORB_init(argc, argv);
 try
 { CORBA::Object_var obj
 = ... // however you get the object reference
 if(CORBA::is_nil (obj))
 { cerr << "Nil object reference" << endl;
 throw 0;
 } // End if
 } // End try
 catch (CORBA::SystemException &sysEx)
 { cerr << "Unexpected system exception" << endl;
 cerr <<&sysEx;
 exit(1);
 } // End catch CORBA::SystemException
 catch (...)
 { cerr << "Unexpected system exception" << endl;
 exit(1);
 } // End catch ...
 myinterface::myobject_var myvar;
 try
 { myvar = myinterface::myobject::_narrow(obj);
 } // End try
 catch (CORBA::SystemException &sysEx)
 { cerr << "Unexpected system exception" << endl;
 cerr <<&sysEx;
 exit(1);
 } // End catch CORBA::SystemException
} // End main

Server Side

Use the code below as a model. This example shows a C++ CORBA server POA init for the ORBIX ORB. For
POA, other ORBS will have a different initialization sequence.

int main
 (int argc,
 char *argv[]
)
{ try
 { // initialize the ORB
 orb_var orb = CORBA::ORB_init(argc, argv, "Orbix");
 // obtain an object reference for the root POA
 object_var obj
 = orb->resolve_initial_references ("RootPOA");
 POA_var poa = POA::_narrow(obj);
 // incarnate a servant
 My_Servant_Impl servant;
 // Implicitly register the servant with the root POA
 obj = servant._this ();
 //start the POA listening for requests
 poa -> the_POAManager ()->activate ();
 //run the orb's event loop
 orb->run ();
 } // End try
 catch (CORBA::SystemException &sysEx)
 { // some exception handling code
 } // End catch
} // End main

Part 2: Traceability

Page 194

G1203

Statement:

Localize frequently used CORBA-specific code in modules that multiple applications can use.

Rationale:

In a family of applications, similar patterns of CORBA Object Request Broker (ORB) invocation sequences
frequently arise. This is common in service object initialization, policy association, discovery, binding, and release
handling. Implementing this functionality in a utility library paradigm localizes the code to reduce maintenance and
facilitate extensibility, and assures consistency across the family of applications.

Referenced By:

Maintainability
Design Tenet: Accommodate Heterogeneity
Design Tenet: Service-Oriented Architecture (SOA)
Reusability
Extensibility
CORBA
Design Tenet: Open Architecture
Interoperability

Evaluation Criteria:

1) Test: [G1203.2]

Do the standard object policy association CORBA invocations occur in more than one module?

Procedure:

The presence of "CORBA::PolicyList" in C++ indicates policy presence.

Example:

None

2) Test: [G1203.1]

Do the standard object initialization CORBA invocations occur in more than one module?

Procedure:

The presence of "CORBA::ORB_var" or "CORBA::ORB_init" in C++ indicates ORB initialization. The presence of
"CORBA::Object_var" in C++ indicates ORB access.

Example:

None

Part 2: Traceability

Page 195

3) Test: [G1203.3]

Do the standard object policy association CORBA invocations occur in more than one module?

Procedure:

The presence of "CORBA::PolicyList" in C++ indicates policy presence.

Example:

None

4) Test: [G1203.4]

Do the standard object discovery CORBA invocations occur in more than one module?

Procedure:

The presence of "Resolve_NamingService()"in C++ indicates intended access to one of CORBA's discovery
capabilities.

Example:

None

5) Test: [G1203.5]

Do the standard object binding and release CORBA invocations occur in more than one module?

Procedure:

The presence of "::_narrow(obj.in())" or "CORBA::is_nil(" in C++ indicates activity associated with
obtaining and validating an object binding to a legitimate reference. The presence of "CORBA(release)(" in C++
indicates intended release of a CORBA-bound object reference.

Example:

None

Part 2: Traceability

Page 196

G1204

Statement:

Create configuration services to provide distributed user control of the appropriate configuration parameters.

Rationale:

For user-modifiable configuration settings that are intended to be accessible by distributed processes at runtime,
the appropriate mechanism for implementation involves CORBA services. The first form is a network service to be
invoked as a client by the target system application at initialization. This can support a consistent, network-wide
distribution of startup parameters. The second form is a service implemented by the target application which allows
communication to the application during execution (after startup). This allows real-time configuration changes for
matters such as Portable Object Adapter (POA) instantiation threading policies to address load management.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity
Design Tenet: Open Architecture
Maintainability
Design Tenet: Decentralized Operations and Management
CORBA

Evaluation Criteria:

1) Test: [G1204.1]

Is a service defined in the IDL to obtain the configuration parameters?

Procedure:

Review the code for a service that can be used to obtain configuration.

Example:

The following code is an example of a CORBA server that instantiates a configuration service. The service manages
the individual configuration parameters for the servers on the ORB.

Ada Example

CORBA.ORB.IIOP_English;
pragma Elaborate_All(CORBA.ORB.IIOP_English);
with CORBA ;
with CORBA.BOA ;
with CORBA.ORB ;
with CORBA.Object ;
with Configuration.Impl ;
with Configuration.Helper ;
with Ada.Exceptions ;
with Ada.Text_IO ;
with my_CORBA ;
with Event_Ada_API ;
procedure Configuration_Server is
 -- required for OrbExpress
 First_Variable : CORBA.ORB.Life_Span ;
 -- declare the object instance

Part 2: Traceability

Page 197

 Configuration_Object : Configuration.Ref ;
 --variables needed for ior writing
 No_Timeout : constant := 0.0;
 Config_Name : constant String
 := Configuration.Helper.Simple_Name ;
 Config_Host : Corba.String ;
 Config_Port : Corba.String ;
begin -- Configuration_Server
 -- create (and initialize) the object
 -- config file is read and the port needed
 -- is in there
 Configuration_Object
 := Configuration.Impl.Create(Config_Name) ;
 GET_HOSTNAME:
 begin
 Config_Host
 := Configuration.Get_String
 (Self => Configuration_Object,
 Name => Corba.To_Corba_String
 ("Local_Host_Shortname")
);
 exception -- GET_HOSTNAME
 when others =>
 Ada.Text_IO.Put_Line
 ("ERROR: Missing parameter"
 & "<Local_Host_Shortname> "
 & "in the config_parameters.txt file."
);
 end GET_HOSTNAME;
 GET_CS_PORT:
 begin
 Config_Port
 := Configuration.Get_String
 (Self => Configuration_Object,
 Name => Corba.To_Corba_String
 ("Config_Service_Port")
);
 Exception -- GET_CS_PORT
 when others =>
 Ada.Text_IO.Put_Line
 ("ERROR: Missing parameter "
 & "<Config_Service_Port> "
 & "in the config_parameters.txt file."
);
 end GET_CS_PORT;
 Ada.Text_IO.Put_Line
 ("Host => "
 & Corba.To_Standard_String(Config_Host)
 & " Port => "
 & Corba.To_Standard_String(Config_Port)
);
 --timeout 0 so we can write IOR out
 CORBA.BOA.Impl_Is_Ready
 (Time_Out => No_Timeout,
 Server_Instance_Name => Config_Name,
 Listen_On_Endpoints =>
 "tcp://"
 & Corba.To_Standard_String(Config_Host)
 & ":"
 & Corba.To_Standard_String(Config_Port)
);
 -- --
 -- HERE IS WHERE CODE FOR THE IOR TO BE
 -- USED ON THE C++ ORB
 -- --
 -- get the IOR and write it to disk
 my_CORBA.Write_IOR_To_File
 (Server_Name => Config_Name,
 Server_Ref =>
 CORBA.Object.Ref(Configuration_Object)
);
 READY_BLOCK:
 begin
 -- notify subscribers of availability
 -- of configuration parameters via the

Part 2: Traceability

Page 198

 -- event service
 Event_Ada_API.Send
 (Channel_Name => "Config_Channel",
 Event => "Configuration Service Ready."
);
 Exception - READY_BLOCK
 when others =>
 Ada.Text_IO.Put_line
 ("Configuration_Server : "
 & Exception sending ready signal."
);
 end READY_BLOCK;
 Ada.Text_IO.Put_line
 ("Configuration_Server : "
 & Configuration Service Ready."
);
 CORBA.BOA.Impl_Is_Ready
 (Time_Out => CORBA.Infinite_Timeout,
 Server_Instance_Name => Config_Name
) ;
exception -- Configuration_Server
 when X_Other: others =>
 Ada.Text_IO.Put_line
 ("Configuration_Server : "
 & Ada.Exceptions.Exception_Name(X_Other)
);
end Configuration_Server ;

C++ Example

The following code snippets depict a C++ server that instantiates a version collection service for an About box.
It uses the IORs from the servers on the Ada ORB via the IOR files, and invokes those objects to get version
information. It uses the utility templates for binding. It exemplifies the approach described in Encapsulate CORBA
ORB operations for C++.

Note: This was done on the ORBIX C++ and Ada ORBs.

#include <iostream.h>
#include <rw/cstring.h>
#ifndef _STDIO_H
#include <stdio.h>
#endif
#ifndef _STRING_H
#include <string.h>
#endif
#ifndef _STDLIB_H
#include <stdlib.h>
#endif
#ifndef _ASSERT_H
#include <assert.h>
#endif
// Include files for all the objects desired for
// collecting version information
//Ada configuration service
#ifndef configuration_hh
#include <configuration.hh>
#endif
// include files for other desired services;
// removed for brevity
// other support objects and utilities
#ifndef _CORBA_UTILS__
#include <corba_utils.h>
#endif
#ifndef __LOG_API_H__
#include <log_api.h>
#endif
#ifndef _VERSION_AGENT_GLOBALS_H_

Part 2: Traceability

Page 199

#include "version_agent_globals.h"
#endif
const RWCString Version_Agent_i::MSG_VERSION_NOT_FOUND_
 = "Version Info. not found for ";
const CORBA::ULong Version_Agent_i::MAXSERVERS_
 = 12;
Version_Agent_i:: Version_Agent_i(): theVersionInfoPtr_(0)
{ theVersionInfoPtr_
 = new versionInfoType(MAXSERVERS_);
 theVersionInfoPtr_->length(MAXSERVERS_);
} // End constructor
Version_Agent_i:: ~Version_Agent_i()
{ // Do nothing
} // End destructor
/**
FUNCTION NAME: createVersions
PURPOSE: helper function that gets the version info
INPUT:
OUTPUT:
**/
void Version_Agent_i::createVersions ()
{ char *iorString;
 int bBindOk = 0;
 int versionCnt = 0;
 versionInfoType* rl = theVersionInfoPtr_;
 CORBA::ULong MAXSERVERS Version_Agent_i::MAXSERVERS_;
 // server variables for all the objects desired
 // for collecting version information
 // most declarations removed for brevity
 EventServiceFactory_var es_var;
 // Ada configuration service
 Configuration_var cfg_var;
 // === load the versions of the individual components
 // Code for other services removed for brevity
 // This is an ADA service using the IOR string
 { //****************** config service ***************
 logMsg
 ("get config service version",
 Log_Api::DEBUG_1_MSG
);
 RWCString errMsg
 (Version_Agent_i::MSG_VERSION_NOT_FOUND_.data()
);
 errMsg.append ("Configuration Service");
 // here we get the IOR from the ADA orb using
 // the helper methods
 iorString = getIorFile("Configuration");
 //template class to hide binding issues to the ADA ORB
 If (iorString)
 { Ada_Binder < Configuration,
 Configuration_var > bo (iorString);
 bBindOk = bo.bindToAda(&cfg_var) ;
 // get the version info and load it
 If (bBindOk
 && !(CORBA::is_nil(cfg_var))
)
 { try
 { char* str = cfg_var->version();
 if (str)
 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(str);
 delete str;
 } // End if
 else
 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(errMsg.data());
 } // End else
 } // End try
 catch(...)
 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(errMsg.data());
 } // End catch
 cfg_var->_closeChannel();
 } // End if
 else

Part 2: Traceability

Page 200

 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(errMsg.data());
 } // End else
 if(iorString)
 { free (iorString);
 iorString = NULL;
 } // End if
 } //endif iorstring
 else
 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(errMsg.data());
 } // End else
 //leaving scope releases the corba object
 } //end cfg_svf
 bBindOk = 0;
 versionCnt++;
 assert(versionCnt <= MAXSERVERS);
} // End createVersions
/**
FUNCTION NAME: start
PURPOSE: handle startup specific stuff
INPUT:
OUTPUT:
**/
void Version_Agent_i:: start
 (CORBA::Environment &IT_env
) throw (CORBA::SystemException)
{ //get all the version info
 createVersions();
} // End start
/**
FUNCTION NAME: stop
PURPOSE: handle stop specific stuff
INPUT:
OUTPUT:
**/
void Version_Agent_i:: stop
 (CORBA::Environment &IT_env
) throw (CORBA::SystemException)
{ // Release info
 // Let CORBA time out the service
 logMsg ("stop received");
 VersionAgentGlobals::myboa->setNoHangup (0);
 VersionAgentGlobals::myboa->deactivate_impl
 ("Version_Agent");
} //end version impl

Part 2: Traceability

Page 201

G1205

Statement:

Use non-source code persistence to store all user-modifiable CORBA service configuration parameters.

Rationale:

For user-modifiable configuration settings that are host-specific and that are not intended to be accessible by
distributed processes at runtime, the appropriate mechanism for implementation involves local persistent storage.
The appropriate form of local storage depends on the local host architecture and may be file- or host-DBMS
oriented. It is important that such parameters are not stored in source code that requires build processes for
modification.

For SOA services, configuration parameters relating to invoked services should not be service-host-specific at the
invoking client application.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Maintainability
CORBA

Evaluation Criteria:

1) Test: [G1205.1]

Are there any user-modifiable configuration parameters hard coded in the non-auto-generated files?

Procedure:

Inspect the code for constant strings or constants that contain configuration parameters.

Example:

None

Part 2: Traceability

Page 202

G1208

Statement:

Add new functionality rather than redefining existing interfaces in a manner that brings incompatibility.

Rationale:

By not replacing old methods of objects, library functionality consumers can continue to operate and not be forced
to upgrade.

Referenced By:

Public Interface Design
Design Tenet: Open Architecture
Design Tenet: Accommodate Heterogeneity
Maintainability
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1208.1]

Are methods that are being replaced marked with deprecated tags?

Procedure:

Check revision history to make sure that methods are deprecated and not removed unless they have expired.
"Expired" means that they have passed the expected shelf life, as defined by the project standards or other standards
documentation.

Example:

None

2) Test: [G1208.2]

Do new methods being added contain information on methods they are replacing?

Procedure:

Check to make sure newly added methods contain information and rationale on the methods they are replacing.

Example:

None

Part 2: Traceability

Page 203

G1209

Statement:

For Java, use JDK logging facilities.

Rationale:

Java has a built-in logging framework that is portable across platforms, projects, and installations.

Referenced By:

Interoperability
Design Tenet: Service-Oriented Architecture (SOA)
Java EE Environment
Design Tenet: Open Architecture
Design Tenet: Accommodate Heterogeneity
Design Tenet: Enterprise Service Management

Evaluation Criteria:

1) Test: [G1209.1]

Does the application use anything other than the specified logging frameworks?

Procedure:

Check for use of logging frameworks other than the JDK.

Example:

None

Part 2: Traceability

Page 204

G1210

Statement:

For .NET, use Debug and Trace from the System.Diagnostics namespace.

Rationale:

.NET has a built-in logging framework that is portable across .NET projects and installations.

Referenced By:

Design Tenet: Accommodate Heterogeneity
Interoperability
Design Tenet: Enterprise Service Management
Design Tenet: Open Architecture
Design Tenet: Service-Oriented Architecture (SOA)
.NET Framework

Evaluation Criteria:

1) Test: [G1210.1]

Does the application use anything other than the specified logging frameworks?

Procedure:

Check for use of logging frameworks other than System.Diagnostics.

Example:

None

Part 2: Traceability

Page 205

G1213

Statement:

Provide an architecture design document.

Rationale:

An architectural design document provides evaluators with a roadmap of the application. This helps evaluators
verify that the application follows guidance such as using the Model View Controller model.

Referenced By:

Design Tenet: Open Architecture
Public Interface Design
Maintainability

Evaluation Criteria:

1) Test: [G1213.1]

Do the project deliverables for evaluation include a document that contains the architectural design of the application?

Procedure:

See if an architectural design document exists.

Example:

None

Part 2: Traceability

Page 206

G1214

Statement:

Provide a document with a plan for deprecating obsolete interfaces.

Rationale:

This information allows users to phase out deprecated interfaces. For instance, Sun plans to maintain backward
compatibility for the JDK for seven years. This means developers can count on deprecated methods not being
removed for seven years.

Referenced By:

Design Tenet: Open Architecture
Maintainability
Public Interface Design

Evaluation Criteria:

1) Test: [G1214.1]

Do the project deliverables for evaluation include a document that contains a plan for deprecating obsolete interfaces?

Procedure:

See if a document with a plan for deprecating obsolete interfaces exists.

Example:

None.

Part 2: Traceability

Page 207

G1215

Statement:

Provide a coding standards document.

Rationale:

The standards ensure a consistent code base. A coding standards document defines rules to keep code readable,
maintainable, and secure.

Referenced By:

Public Interface Design
Design Tenet: Open Architecture
Apply Secure Coding Standards
Maintainability

Evaluation Criteria:

1) Test: [G1215.1]

Do the project deliverables for evaluation include a coding standards document?

Procedure:

See if a coding standards document exists.

Example:

None

Part 2: Traceability

Page 208

G1216

Statement:

Provide a software release plan document.

Rationale:

The release plan document ensures that there is a formal process for releasing the software. It includes a
description of how to acquire the software from the software configuration management (SCM) repository and how
to build, label, and release it.

Referenced By:

Public Interface Design
Maintainability
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1216.1]

Do the project deliverables for evaluation contain a release plan document?

Procedure:

See if a software release plan exists.

Example:

None

Part 2: Traceability

Page 209

G1217

Statement:

Develop and use externally configurable components.

Rationale:

To be portable and to accommodate reuse, components must be configurable using external descriptors usually
defined in XML. Examples of things that might need to be configured include the following:

• A data source for the component to obtain a Java Database Connection (JDBC)

• The location of a service with which the component must communicate

• The location of implementation classes that the component uses

Referenced By:

Implement a Component-Based Architecture
Design Tenet: Accommodate Heterogeneity
Design Tenet: Service-Oriented Architecture (SOA)
Reusability
Design Tenet: Open Architecture
Maintainability

Evaluation Criteria:

1) Test: [G1217.1]

Are deployment descriptors used?

Procedure:

Check for the existence of deployment descriptors in the appropriate directories. Usually the file is named web.xml.

Example:

None

Part 2: Traceability

Page 210

G1218

Statement:

Use a build tool that supports operation in an automated mode.

Rationale:

During testing, human interaction can be a cause of error and unrepeatable results. Operating in automated mode
can eliminate these errors.

Referenced By:

Automate the Software Build Process
Design Tenet: Open Architecture
Maintainability
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1218.1]

Does the tool have a build all target?

Procedure:

Check the build scripts or descriptors of the build tool for the ability to build the entire project, system, or application.

Example:

None

Part 2: Traceability

Page 211

G1219

Statement:

Use a build tool that checks out files from configuration control.

Rationale:

To make sure all the parts of the build are under configuration control, compare all files with the configuration
baseline, and download the appropriate files.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Maintainability
Automate the Software Build Process

Evaluation Criteria:

1) Test: [G1219.1]

Does the tool have a checkout target?

Procedure:

Check the build scripts or descriptors of the build tool for the ability to check out the entire project, system, or
application.

Example:

None

Part 2: Traceability

Page 212

G1220

Statement:

Use a build tool that compiles source code and dependencies that have been modified.

Rationale:

To limit the changes made between builds, only compile code that has been modified. If there are no intermediate
files, then compile all files.

Referenced By:

Automate the Software Build Process
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Maintainability

Evaluation Criteria:

1) Test: [G1220.1]

Does the tool have a compile target?

Procedure:

Check the build scripts or descriptors of the build tool for the ability to compile the entire project, system, or
application.

Example:

None

2) Test: [G1220.2]

Do all the intermediate files (e.g., .obj or .class) have the same date and time stamps?

Procedure:

Scan the files for date and time stamps.

Example:

None

Part 2: Traceability

Page 213

G1221

Statement:

Use a build tool that creates libraries or archives after all required compilations are completed.

Rationale:

Libraries should be able to be recreated independently of any executables and should always verify that any
intermediate files are not stale.

Referenced By:

Design Tenet: Open Architecture
Design Tenet: Service-Oriented Architecture (SOA)
Automate the Software Build Process
Maintainability

Evaluation Criteria:

1) Test: [G1221.1]

Does the tool have a generate library target?

Procedure:

Check the build scripts or descriptors of the build tool for the ability to generate the composing libraries or archives.

Example:

None

Part 2: Traceability

Page 214

G1222

Statement:

Use a build tool that creates executables.

Rationale:

An executable is dependent on many files, including source files, intermediate files, and libraries or archives. The
building of the executable must support a control process that includes configuration management, compiling, and
testing.

Referenced By:

Automate the Software Build Process
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Maintainability

Evaluation Criteria:

1) Test: [G1222.1]

Does the tool have an executable target?

Procedure:

Check the build scripts or build tool descriptors for the ability to build the executables for the entire project, system, or
application.

Example:

None

Part 2: Traceability

Page 215

G1223

Statement:

Use a build tool that is capable of running unit tests.

Rationale:

All code should be able to be tested independently of creating intermediate files, libraries, or executables.

Tests should be unit tests as well as system-level tests.

Referenced By:

Automate the Software Build Process
Maintainability
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1223.1]

Does the tool have a test target?

Procedure:

Check the build scripts or descriptors of the build tool for the ability to test the entire project, system, or application.

Example:

None

Part 2: Traceability

Page 216

G1224

Statement:

Use a build tool that cleans out intermediate files that can be regenerated.

Rationale:

For security reasons, all files that comprise the build need to be under configuration control. Cleaning out all files is
essential in ensuring that only approved code is incorporated into the build.

Referenced By:

Automate the Software Build Process
Design Tenet: Open Architecture
Design Tenet: Service-Oriented Architecture (SOA)
Maintainability

Evaluation Criteria:

1) Test: [G1224.1]

Does the tool have a clean target?

Procedure:

Check the build scripts or descriptors for the build tool for the ability to remove the entire project, system, or
application files.

Example:

None

Part 2: Traceability

Page 217

G1225

Statement:

Use a build tool that is independent of the Integrated Development Environment.

Rationale:

Some build tools are tightly coupled with an Integrated Development Environment (IDE) that causes vendor
lock-in and license issues when the software is delivered to the Government.

Referenced By:

Maintainability
Automate the Software Build Process
Design Tenet: Open Architecture
Interoperability
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1225.2]

Is the build tool one of the recognized standards, such as ant?

Procedure:

Check for files named build.xml.

Example:

None

2) Test: [G1225.3]

Is the build tool one of the recognized standards, such as make or nmake?

Procedure:

Check for files with the name makefile.

Example:

None

3) Test: [G1225.1]

Does the build tool require a license?

Procedure:

Check for files with the name makefile.

Part 2: Traceability

Page 218

Example:

None

Part 2: Traceability

Page 219

G1236

Statement:

Do not hard-code the endpoint of a Web service vendor.

Rationale:

An endpoint is the URL or location of the Web service on the Internet. A major benefit of Web services is the
ability to relocate a Web service to another location or dynamically discover and use a Web service using registry
facilities. Some Web service vendors hard-code the URL of the Web service which causes maintenance and
portability problems.

Referenced By:

Design Tenet: Open Architecture
Design Tenet: Accommodate Heterogeneity
Interoperability
Design Tenet: Service-Oriented Architecture (SOA)
Insulation and Structure
Maintainability

Evaluation Criteria:

1) Test: [G1236.1]

Are there any hard-coded Web service vendor endpoints in the client code?

Procedure:

Parse the code and look for hard-coded endpoints. These endpoints look just like a normal HTTP Web address.

Example:

None

Part 2: Traceability

Page 220

G1237

Statement:

Do not hard-code the configuration data of a Web service vendor.

Rationale:

Some vendors generate code that passes Web service vendor-specific configuration data during initialization or
startup. This reduces the portability of the code and can cause maintenance problems later.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Design Tenet: Accommodate Heterogeneity
Interoperability
Insulation and Structure
Maintainability

Evaluation Criteria:

1) Test: [G1237.1]

Is there any Web service vendor-specific configuration data in the client code?

Procedure:

Parse the code and look for hard-coded configuration data that might be used to configure the vendor's Web service.

Example:

None

Part 2: Traceability

Page 221

G1239

Statement:

Use design patterns (e.g., facade, proxy, or adapter) or property files to isolate vendor-specifics of vendor-
dependent connections to the enterprise.

Rationale:

This isolation increases maintainability. Guidance G1071 asserts that vendor-neutral connection mechanisms
should be used. When vendor-specific connection mechanisms are unavoidable, this guidance will apply.

Referenced By:

Design Tenet: Open Architecture
Maintainability
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity
JNDI Security

Evaluation Criteria:

1) Test: [G1239.1]

Is the connection mechanism vendor-dependent?

Procedure:

Examine the source code for vendor-specific imports or includes.

Make sure that all references to the vendor-specific connection mechanisms are isolated to a single class (like a
helper) or set of methods that are used as part of an isolation design pattern such as facade, proxy, or adapter.

Also, look for hard-coded vendor-specific connection strings.

Example:

None

Part 2: Traceability

Page 222

G1245

Statement:

Isolate the Web service portlet from platform dependencies using the Web Services for Remote Portlets
(WSRP) Specification protocol.

Rationale:

The OASISWSRP 1.0 Specification accounts for the fact that producers and consumers may be implemented on
very different platforms, such as a Java EE-based Web service, a Web service implemented on the Microsoft .Net
platform, or a portlet published directly by a portal.

Referenced By:

Web Portals
Interoperability
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity
Design Tenet: Open Architecture
Design Tenet: Decentralized Operations and Management

Evaluation Criteria:

1) Test: [G1245.3]

Does the Web service implement the WSRP Portlet Configuration interface?

Procedure:

Look for the occurrence of the getService, getPortletDescription, clonePortlet, destroyPortlets,
setPortletProperties, getPortletProperties and getPortletPropertyDescription methods as
defined in the OASIS WSRP Portlet Configuration API Specification.

Example:

public static PortletManagementService getService
 (java.lang.String baseEndpoint
) throws java.lang.Exception
public PortletDescriptionResponse getPortletDescription
 (RegistrationContext registrationContext,
 PortletContext portletContext,
 UserContext userContext,
 java.lang.String[] desiredLocales
) throws java.lang.Exception
public PortletContext clonePortlet
 (RegistrationContext registrationContext,
 PortletContext portletContext,
 UserContext userContext
) throws java.lang.Exception
public DestroyPortletsResponse destroyPortlets
 (RegistrationContext registrationContext,
 java.lang.String[] portletHandles
) throws java.lang.Exception
public PortletContext setPortletProperties
 (RegistrationContext registrationContext,
 PortletContext portletContext,
 UserContext userContext,
 PropertyList propertyList

Part 2: Traceability

Page 223

) throws java.lang.Exception
public PropertyList getPortletProperties
 (RegistrationContext registrationContext,
 PortletContext portletContext,
 UserContext userContext,
 java.lang.String[] names
) throws java.lang.Exception
public PortletPropertyDescriptionResponse getPortletPropertyDescription
 (RegistrationContext registrationContext,
 PortletContext portletContext,
 UserContext userContext,
 java.lang.String[] desiredLocales
) throws java.lang.ExceptionThrows

2) Test: [G1245.1]

Does the Web service implement the WSRP Markup interface?

Procedure:

Look for the definition of the getMarkup, performBlockingInteraction, initCookie and releaseSessions
methods as defined in the OASIS WSRP Markup API Specification.

Example:

public MarkupResponse getMarkup
 (RegistrationContext registrationContext,
 PortletContext portletContext,
 RuntimeContext runtimeContext,
 UserContext userContext,
 MarkupParams markupParams
) throws java.lang.Exception
public void performBlockingInteraction
 (RegistrationContext registrationContext,
 PortletContext portletContext,
 RuntimeContext runtimeContext,
 UserContext userContext,
 MarkupParams markupParams,
 InteractionParams interactionParams
) throws java.lang.Exception
public Extension[] initCookie
 (RegistrationContext registrationContext
) throws java.lang.Exception
public Extension[] releaseSessions
 (RegistrationContext registrationContext,
 java.lang.String[] sessionIDs
) throws java.lang.Exception

3) Test: [G1245.4]

Does the Web service implement the WSRP Registration interface?

Procedure:

Look for the occurrence of the getService, register, deregister, and modifyRegistration methods as
defined in the OASIS WSRP Specification.

Example:

public static RegistrationService getService
 (java.lang.String baseEndpoint
) throws java.lang.Exception
public RegistrationContext register
 (java.lang.String consumerName,

Part 2: Traceability

Page 224

 java.lang.String consumerAgent,
 boolean methodGetSupported,
 java.lang.String[] consumerModes,
 java.lang.String[] consumerWindowStates,
 java.lang.String[] consumerUserScopes,
 java.lang.String[] customUserProfileData,
 Property[] registrationProperties
) throws java.lang.Exception
public ReturnAny deregister
 (java.lang.String registrationHandle,
 byte[] registrationState
) throws java.lang.Exception
public RegistrationState modifyRegistration
 (RegistrationContext registrationContext,
 RegistrationData registrationData
) throws java.lang.Exception

4) Test: [G1245.2]

Does the Web service implement the WSRP Service Description interface?

Procedure:

Look for the occurrence of the getService, register, and getServiceDescription methods as defined in the
OASIS WSRP Service Description API Specification.

Example:

public static ServiceDescriptionService getService
 (java.lang.String baseEndpoint
) throws java.lang.ExceptionThrows:
jpublic ServiceDescription getServiceDescription
 (RegistrationContext registrationContext,
 java.lang.String[] desiredLocales
) throws java.lang.Exception

Part 2: Traceability

Page 225

G1267

Statement:

Use industry standard HTML data entry fields on Web pages.

Rationale:

Macromedia Flash and Java Applets can also be used for data input but are not HTML standards and tend to
decrease the maintainability of a Web site.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces
Design Tenet: Open Architecture
Maintainability
Design Tenet: Service-Oriented Architecture (SOA)
Interoperability
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [G1267.1]

Do any Web pages have data entry fields?

Procedure:

Search all Web pages for the "applet" and "embed" tags. Load each page found in the search by loading and visually
inspecting to see if Flash or Applets are used for data entry.

Example:

Correct Usage:

Incorrect usage:

Applet

Flash

Part 2: Traceability

Page 226

G1268

Statement:

Label all data entry fields.

Rationale:

A label provides the user with a brief description of the text to be entered. Labels are essential for a user to
understand the data entry field.

Referenced By:

Human-Computer Interaction
Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Evaluation Criteria:

1) Test: [G1268.1]

Are all data entry fields labeled?

Procedure:

Search all Web pages for the word "form" and load each resulting Web page in a browser. Visually inspect each data
entry field to make sure it has labels.

Example:

None

Part 2: Traceability

Page 227

G1270

Statement:

Include scroll bars for text entry areas if the data buffer is greater than the viewable area.

Rationale:

Scroll bars provide a visual cue to the user that the text extends beyond the viewable area. Scroll bars will appear
by default for an HTML text area.

Referenced By:

Interoperability
Human-Computer Interaction
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1270.1]

Do any Web pages turn off scroll bars for text areas?

Procedure:

Search all Web pages and style sheets for the phrase "overflow:hidden" or a form thereof. This turns off scroll bars
using styles, but only works in certain browsers. Make sure it is not used.

Example:

Correct Usage

Scroll bars should not be hidden.

Incorrect Usage

Inline style:

<html>
<body>
<form>
<textarea style="overflow:hidden"></textarea>
</form>
</body>
</html>

External style:

textarea.scroll {
 overflow:hidden;
}

Part 2: Traceability

Page 228

G1271

Statement:

Provide instructions and HTML examples for all style sheets.

Rationale:

An instruction manual will enable developers to use the style sheet correctly and efficiently.

Referenced By:

Browser-Based Clients
Style Sheets
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Reusability
Extensibility
Maintainability
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [G1271.1]

Are instructions included for each style sheet provided?

Procedure:

Verify that a document is provided that contains instructions and example code for each style provided.

Example:

Correct usage:

Cascading style sheet:
.td-items {
 text-align:right;
}

Example of usage:

Incorrect usage:
No HTML example explaining style usage.

Part 2: Traceability

Page 229

G1276

Statement:

Do not modify the contents of the Web browser's status bar.

Rationale:

Using the browser's status bar to display text unrelated to status affects interoperability because a user expects
the status bar to provide status and nothing else.

Referenced By:

Design Tenet: Open Architecture
Design Tenet: Enterprise Service Management
Interoperability
Design Tenet: Accommodate Heterogeneity
Human Factor Considerations for Web-Based User Interfaces
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1276.1]

Do any of the Web pages modify the browser status bar?

Procedure:

Search every Web page for the word "status" and visually inspect each of the search results to see if the status bar
has been modified.

Example:

Correct usage:

 Web pages contain no references to window.status
Incorrect usage:

 window.status = 'text to display in status bar'

Part 2: Traceability

Page 230

G1277

Statement:

Do not use tickers on a Web site.

Rationale:

Tickers can irritate the user and use unnecessary bandwidth.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces
Interoperability
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1277.1]

Do any Web pages contain scrolling text?

Procedure:

Most tickers are written using Applets or Flash. Search all Web pages for the "applet" and "embed" tags. Load each
page found in the search and visually inspect to make sure no tickers exist.

Example:

Correct usage:

 No applet or flash references contain tickers.

Incorrect usage:

Applet:
 applet code="myticker.class" width="200" height="200"
Flash:
 embed src="myticker.swf" width="200" height="200"

Part 2: Traceability

Page 231

G1278

Statement:

Use the browser default setting for links.

Rationale:

Browsers underline links by default. Do not rely on "mouse over" to identify links. Using mouse over to designate
links can confuse and slow down infrequent users because they are uncertain which links perform which functions.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Interoperability
Human Factor Considerations for Web-Based User Interfaces
Design Tenet: Open Architecture
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [G1278.1]

Do any Web pages or style sheets modify the browser default settings for links?

Procedure:

Search all the Web pages and style sheets for "A:link," "A:visited" and "A:active." Inspect all search results and make
sure none of them modify the "A:" items.

Example:

Correct usage:

Web pages and style sheets should have no reference to A:link, A:visited or A:active.

Incorrect usage:

A:link, A:visited, A:active {
 text-decoration:none;
}

Part 2: Traceability

Page 232

G1283

Statement:

Use linked style sheets rather than embedded styles.

Rationale:

Only by referencing an external file will you be able to update the look of an entire Web site with a single change.
Also, by pulling style definitions out of the pages, they (Web pages) will be smaller and faster to download.

Referenced By:

Style Sheets
Maintainability
Reusability
Browser-Based Clients
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Scalability

Evaluation Criteria:

1) Test: [G1283.1]

Does a Web page use the LINK tag to include external style sheets instead of embedding styles?

Procedure:

View the source of the HTML page. The header tag (head) should contain links to external style sheet (.css) files. The
header tag should not contain any style tags.

Example:

Correct usage:

External style:

<head>
 <link rel=stylesheet href="style.css" type="text/css" media=screen>
 <link rel=stylesheet href="basic.css" type="text/css" media=screen>
</head>

Incorrect usage:

Embedded style:

<head>
 <style type="text/css">
 td {
 background:#ff0;
 }
 </style>
</head>

Part 2: Traceability

Page 233

G1284

Statement:

Use only one font for HTML body text.

Rationale:

Users may not have a wide variety of fonts available in their browser, so it is best to use a single, common font.
The general standard is to make body text sans serif since most people find sans serif fonts easier to read on
monitors and serif fonts better for printed materials.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces
Interoperability
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [G1284.1]

Does the HTML or style sheet refrain from using more than one font?

Procedure:

Search all Web pages and style sheets for the word "font." Make sure only one type of font is used for body text. May
need to visually inspect Web pages to see if a defined font style is used within the body.

Example:

Correct usage:

Cascading style sheet:

body.main {
 font:sans-serif;
}

HTML:

Incorrect usage:

Several font styles are used within a body.

Part 2: Traceability

Page 234

G1285

Statement:

Use relative font sizes.

Rationale:

Relative font sizes make Web sites more accessible and support meeting the requirements of Section 508 of the
Rehabilitation Act of 1973. Relative font sizes allow for a low-vision user to enlarge the size of the text. Relative
font sizes also support maintainability by not hard coding fixed font sizes.

Referenced By:

Design Tenet: Accommodate Heterogeneity
Human-Computer Interaction
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Interoperability

Evaluation Criteria:

1) Test: [G1285.1]

Are any absolute font sizes utilized?

Procedure:

Search all Web pages and style sheets for the word "font." Inspect the results to make sure no fixed fonts are used
(e.g., 12pt).

Example:

Correct Usage

Relative or no font sizes settings are used.
Cascading style sheets:

p {
 font-size:200%;
}
p {
 font-size:2em;
}

Incorrect Usage

Cascading style sheets:

p {
 font-size:12pt;
}

Part 2: Traceability

Page 235

HTML (the font attribute should not be used at all within HTML code, only external style sheets):

Part 2: Traceability

Page 236

G1286

Statement:

Provide text labels for all buttons.

Rationale:

Users need to understand the purpose of all buttons. In some cases an image on the button is not sufficient to
convey meaning. Screen scrapers used by the visually impaired work better when text labels are available for
buttons

In cases where icons serve as buttons in order to fit within a small display device (such as a personal digital
assistant), providing an option to enable text labels (or providing alternate attributes in the case of Web-based
interfaces) supports screen scrapers.

Referenced By:

Interoperability
Human-Computer Interaction
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1286.1]

Do all buttons have associated text labels?

Procedure:

Inspect the user interface to verify text labels are available for all buttons.
Text labels may optionally be displayed:
 - on or near the button
 - as a tooltip when the user hovers over a button
 - as part of a help system where a user clicks and identify tool and then clicks a button.
Button label text may not be enabled by default on all applications, especially systems with small resolution screens
such as PDAs.

Example:

Correct usage:

<form action="mailto:me@abc.com"
method="post">
<input type="submit" name="emailbut"
value="Send feedback" />
</form>

Incorrect usage (using images only):

<input type="image" src="send.gif" name="
emailbut"/>

Part 2: Traceability

Page 237

G1287

Statement:

Provide feedback when a transaction will require the user to wait.

Rationale:

Users may think that the application has stopped running or is malfunctioning.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Interoperability
Design Tenet: Enterprise Service Management
Human-Computer Interaction

Evaluation Criteria:

1) Test: [G1287.1]

Does the application provide feedback during long processes?

Procedure:

Run the application and observe any processes that take longer than 10 seconds to complete. Observe if any status
indication is provided to alert the user of the status.

Example:

None

Part 2: Traceability

Page 238

G1292

Statement:

Use text-based Web site navigation.

Rationale:

Text-based navigation works better than image-based navigation because it enables users to understand the
link destinations. Users with text-only browsers and browsers with deactivated graphics can see only text-based
navigation options.

Referenced By:

Design Tenet: Accommodate Heterogeneity
Human Factor Considerations for Web-Based User Interfaces
Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Evaluation Criteria:

1) Test: [G1292.1]

Are there any instances where graphics are used for navigation?

Procedure:

Visually inspect all Web pages and make sure navigation elements are textual.

Example:

None

Part 2: Traceability

Page 239

G1293

Statement:

Use descriptive labels for all clickable graphics.

Rationale:

Clickable images generally confuse users, especially images that contain only graphics. Some that contain both
graphics and words are also confusing because users do not know if the images are clickable without using the
mouse pointer.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces
Interoperability
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [G1293.1]

Do Web pages contain clickable images?

Procedure:

Search all Web pages for image ("img") tags embedded inside link ("a") tags. Visually inspect each image found in the
search and make sure there is an associated text description.

Example:

Correct Usage

Click myimage to go to www.mywebsite.com

Incorrect Usage

Part 2: Traceability

Page 240

G1294

Statement:

Provide a site map on all Web sites.

Rationale:

A site map shows explicit organization of the site. Inexperienced users do not readily form a mental model of the
way that information is organized in a Web site, making it hard for them to recover from navigational errors.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces
Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Evaluation Criteria:

1) Test: [G1294.1]

Does the Web site have a site map?

Procedure:

Search all Web pages for anything with the name "sitemap," "site map" and "map." Visually inspect the search results
to make sure a site map is included.

Example:

None

Part 2: Traceability

Page 241

G1295

Statement:

Provide redundant text links for images within an HTML page.

Rationale:

Redundant text links for images within an HTML page allow users to navigate the Web page even if their browsers
do not display images (as in situations where the Web browser renders content without images due to bandwidth
considerations). Screen scrapers that assist the visually impaired also use redundant text links. Images may occur
within Web pages as part of the content or navigation controls to include image maps.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity
Human Factor Considerations for Web-Based User Interfaces
Interoperability

Evaluation Criteria:

1) Test: [G1295.1]

Are alternative text links provided for all HTML page images used for navigation?

Procedure:

Verify that alternative text links are provided for images used for navigation by inspecting the HTML source code and
testing the HTML page in a browser with image rendering turned off.

Example:

None.

Part 2: Traceability

Page 242

G1300

Statement:

Secure all endpoints.

Rationale:

Something is only as secure as its weakest link. Therefore, all access points in an application should be secured.
An endpoint is defined as an entry or an exit point of an application. Any access point can be vulnerable to attacks.
For instance, if an application file reads configuration settings from a properties file, that file can be corrupted
or incorrectly configured. This can cause incorrect behavior in the application. Also if component, module or
application provides remote access or is part of any inter-process communications, these areas are vulnerable
to attacks. For instance, if the application provides an external socket interface, does it validate commands being
sent by the client?

Referenced By:

Interoperability
General Application Security
Design Tenet: Identity Management, Authentication, and Privileges
Maintainability

Evaluation Criteria:

1) Test: [G1300.2]

Does the application handle invalid configuration, provide appropriate defaults, and protect sensitive data?

Procedure:

Check application processing of data files (configuration files, properties files, preferences, XML, etc.).

Example:

None.

2) Test: [G1300.1]

Does the application properly handle security when dealing with externally accessible API(s) and external ports?

Procedure:

Verify sensitive data is protected, and verify all network base protocols validate commands and values.

Example:

None.

Part 2: Traceability

Page 243

G1301

Statement:

Practice layered security.

Rationale:

An application with layered security provides more protection against attacks. Combining multiple layers of security
defenses can provide additional protection when one layer is broken.

Referenced By:

General Application Security
Other Design Tenets
Interoperability
Maintainability
Practice Defense in Depth
Design Tenet: Layering and Modularity

Evaluation Criteria:

1) Test: [G1301.1]

Do internal and external API(s) perform security checks?

Procedure:

Make sure layers of API(s) starting from externally accessible API(s) down through the layers of internally accessible
API(s) provide sufficient security checks. For example, does each layer of the API perform data validation? If internal
API is calling remote services, is the data sufficiently protected from snoopers (e.g., use of secure sockets)?

Example:

None

2) Test: [G1301.2]

Does the application handle security when processing data files?

Procedure:

Embed all application specific resources such as graphics, internal application configuration files such as
internationalization properties/resources, XML files as part of a signed application deployment file (.jar, .exe, etc.).

Example:

None

Part 2: Traceability

Page 244

G1302

Statement:

Validate all inputs.

Rationale:

Do not limit input validation to the presentation tier; rather, all external APIs should validate inputs prior to use.
This is just one aspect of defense in depth which can prevent many attacks including SQL Injection, Cross-Site
Scripting, Buffer Overflows, and Denial of Service.

Referenced By:

Other Design Tenets
Validate Input
Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
General Application Security

Evaluation Criteria:

1) Test: [G1302.2]

Does the application provide proper handling for null input?

Procedure:

Check application handling of null values.

Example:

None

2) Test: [G1302.1]

Does the application use prefix or postfix validation (asserts) to verify input parameters?

Procedure:

Check application range validation of externally accessible API(s).

Example:

None

Part 2: Traceability

Page 245

G1304

Statement:

Unit test all code.

Rationale:

A high percentage of all security violations can be attributed to inadequate or non-existent unit testing. Hackers
can take advantage of these.

Referenced By:

General Application Security
Interoperability
Apply Quality Assurance to Software Development

Evaluation Criteria:

1) Test: [G1304.1]

Does the project unit test the code base?

Procedure:

Use a coverage tool to determine how much of the project's code have been tested.

Check for use of a unit testing framework (JUnit for example).

Example:

None

Part 2: Traceability

Page 246

G1305

Statement:

Ensure the separation of encrypted and unencrypted information.

Rationale:

Not separating encrypted and unencrypted information can cause the application to incur performance hits due to
unnecessary encryption. It can also cause inconsistent application processing.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Encryption and HAIPE
Other Design Tenets
Interoperability
General Application Security

Evaluation Criteria:

1) Test: [G1305.1]

Does the data model separate sensitive data from other data?

Procedure:

Check UML or entity diagram to ensure that separate components or entities are used to defined sensitive data.

If annotation support is provided via XML, ensure that the data is properly labeled (XML attribute) with correct security
attributes.

Example:

None

Part 2: Traceability

Page 247

G1306

Statement:

Identify and authenticate users of the application.

Rationale:

This ensure there is some traceability and also provides the first in a multilayer security system.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
General Application Security

Evaluation Criteria:

1) Test: [G1306.2]

Does the application authenticate with another service (LDAP, database or simple password)?

Procedure:

Inspect application code to ensure that the user is authenticated against an LDAP, database or simple password
service.

Example:

None

2) Test: [G1306.1]

Does the application require user certificates?

Procedure:

Ensure the application is setup to require client side certificates. This can be done easily by using a machine without
any DoD client certificates installed and attempting to access the application.

Example:

None

Part 2: Traceability

Page 248

G1307

Statement:

Provide a security policy file.

Rationale:

Security should not be an afterthought after application design and implementation. A security policy file can go
along way in ensuring that application security has been part of the design and implementation of the application.
A security policy file can identify all the security measures that the application has laid out.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Maintainability
General Application Security

Evaluation Criteria:

1) Test: [G1307.1]

Does the project have Security Policy File?

Procedure:

Check for the existence of a Security Policy file.

Example:

None

Part 2: Traceability

Page 249

G1308

Statement:

Configure Public Key Enabled applications to use a Federal Information Processing Standard (FIPS) 140-2
certified cryptographic module.

Rationale:

The guidance defines the application types required to support DoD class 3 PKI.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Maintainability
Interoperability
Public Key Infrastructure (PKI) and PK Enable Applications
Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [G1308.1]

Is the application using an approved Federal Information Processing Standard (FIPS) 140-1
cryptographic module?

Procedure:

Check the cryptographic module to see if it is FIPS 140-2 compliant.

Example:

None

Part 2: Traceability

Page 250

G1309

Statement:

Make applications handling high value unclassified information in Minimally Protected environments Public Key
Enabled to interoperate with DoD High Assurance .

Rationale:

This guidance defines the application types required to support DoD High Assurance (Mission Assurance Category
I [MAC I]) certificates.
The definition of MAC I is "systems handling information that is determined to be vital to the operational readiness
or mission effectiveness of deployed and contingency forces in terms of both content and timeliness. The
consequences of loss of integrity or availability of a MAC I system are unacceptable and could include the
immediate and sustained loss of mission effectiveness. MAC I systems require the most stringent protection
measures." (DoD Instruction 8580.1, Information Assurance (IA) in the Defense Acquisition System, 9 July
2004. [R1199])

Note: This guidance is derived from DoD Instruction 8520.2, Public Key Infrastructure (PKI) and Public
Key (PK) Enabling, 1 April 2004. [R1206]

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Public Key Infrastructure (PKI) and PK Enable Applications
Maintainability

Evaluation Criteria:

1) Test: [G1309.1]

Is the application using a High Assurance key material generated in a Federal Information Processing Standard
(FIPS) 140 Level 2 validated hardware cryptographic module?

Procedure:

Check cryptographic module to see if it is FIPS 140 Level 2 compliant.

Example:

None.

Part 2: Traceability

Page 251

G1310

Statement:

Protect application cryptographic objects and functions from tampering.

Rationale:

If cryptographic objects such as private keys, key store, and CA trusted certificates are not protected, the system is
not secure.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Public Key Infrastructure (PKI) and PK Enable Applications
Interoperability

Evaluation Criteria:

1) Test: [G1310.1]

Are cryptographic objects protected?

Procedure:

Check that key stores, private keys, and trust points are protected.

Verify a documented procedure for creating and documenting the creation of keys exists.
Verify a documented procedure for obtaining certificates exists.
Verify a documented procedure for backing up cryptographic objects exists.

Example:

Use High Security Level setting in Internet Explorer to ensure password protection is used. See https://
infosec.navy.mil/PKI/certs.html for software certificate steps. See https://infosec.navy.mil/PKI/cac.html for CAC.

ps://infosec.navy.mil/PKI/certs.html
ps://infosec.navy.mil/PKI/certs.html
https://infosec.navy.mil/PKI/cac.html

Part 2: Traceability

Page 252

G1311

Statement:

Use Hypertext Transfer Protocol over Secure Socket Layer (HTTPS) when applications communicate with
DoD Public Key Infrastructure (PKI) components.

Rationale:

These are the DoD approved protocols and the only supported ones.

Note: This guidance is derived from DoD Instruction 8520.2, Public Key Infrastructure (PKI) and Public
Key (PK) Enabling, 1 April 2004. [R1206]

Referenced By:

Public Key Infrastructure (PKI) and PK Enable Applications
Interoperability
Reusability
Maintainability
Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [G1311.1]

Does the application use only HTTPS to communicate when using DoD PKI?

Procedure:

Have application access the DoD PKI Global Directory Service (GDS) Directory (dod411.gds.disa.mil/) via HTTPS.

Example:

None

Part 2: Traceability

Page 253

G1312

Statement:

Make applications capable of being configured for use with DoD PKI.

Rationale:

Applications must be configurable to request and install certificates, add trust points, and require client
authentication.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.4, Version 1.0, 13 July 2000.

Referenced By:

Interoperability
Design Tenet: Identity Management, Authentication, and Privileges
Public Key Infrastructure (PKI) and PK Enable Applications
Maintainability

Evaluation Criteria:

1) Test: [G1312.1]

Is there a capability to configure the application for use with DoD PKI?

Procedure:

Check to make sure the application is configurable to accept certificates, load key stores, and add trust points; this
may involve inspecting user and administrator manuals.

Example:

None

Part 2: Traceability

Page 254

G1313

Statement:

Provide documentation for application configuration and setup for use with DoD PKI.

Rationale:

If the application can not be configured or setup correctly, the application is insecure. Without detail
documentation, personnel with little knowledge of security or PKI will have little chance of keeping the overall
system secure. The Navy Public Key Infrastructure training site, https://infosec.navy.mil/PKI/training.html (DoD PKI
Certificate required for access), contains links to several configuration guides.

Note: This guidance is derived from the DoD Instruction 8520.2, Public Key Infrastructure (PKI) and
Public Key (PK) Enabling, 1 April 2004. [R1206]

Referenced By:

Maintainability
Public Key Infrastructure (PKI) and PK Enable Applications
Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [G1313.1]

Is there documentation (such as Standard Operating Procedures [SOPs]) on how to configure and setup the
application to interoperate within the DoD PKI?

Procedure:

Verify by inspection of the SOPs and by a demonstration that the application performs as documented when the
configuration guidance is followed.

Example:

Most application manuals have detailed instructions in enabling PKI (either under the heading "enabling SSL" or
"certificates").

https://infosec.navy.mil/PKI/training.html

Part 2: Traceability

Page 255

G1314

Statement:

Provide applications the ability to import and export keys (software certificates only).

Rationale:

The whole PKI system is predicated on the use of public-private key pair. The ability to import and use private keys
is critical to a functional PKI application.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.5, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Key Management
Interoperability
Maintainability

Evaluation Criteria:

1) Test: [G1314.1]

Is the application able to import and export keys associated with standard certificates for individuals?

Procedure:

Have the application import and export at least one set of keys and certificates for each certificate type supported by
the application. Demonstrate interoperability by performing representative subscriber and relying party operations with
each certificate type and its related keys.

Note: Verify the correctness of the exported file through analysis.

Example:

Internet Explorer can import/export certificates using Tools > Internet Options. Click on Internet tab and then click on
Certificates link. Import/Export options are located here.

UNIX-based Web server keys are exported by making a copy of the keys file and placing it in a safe location.

Part 2: Traceability

Page 256

G1315

Statement:

For applications, use key pairs and Certificates created for individuals using DoD PKI methods and procedures
defined by the DoD Class 3 Public Key Infrastructure Interface Specification and the Personal Information
Exchange Syntax Standard.

Rationale:

DoD PKI supports these standards for importing keys and certificates. If the key or certificate is not created or
issued by approved DoD Certificate architecture, it can not be trusted to interoperate within the DoD network.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.5, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Maintainability
Interoperability
Key Management

Evaluation Criteria:

1) Test: [G1315.1]

Can the application import and export keys associated with standard certificates for individuals?

Procedure:

Verify by importing and exporting to DoD PKI key store.

Access the application using a DoD PKI Class 3 Certificate.

Example:

For servers, verify that the application requires client side authentication. Access the application server using a DoD
PKI certificate.

Part 2: Traceability

Page 257

G1316

Statement:

Ensure that applications protect private keys.

Rationale:

In order for the PKI system to stay secure, the private key must not be compromised. Protecting the private key
helps prevent attackers from decrypting secured data communications.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.5, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Key Management

Evaluation Criteria:

1) Test: [G1316.1]

Does the application use and store the private key securely?

Procedure:

Check for the following:

 - all copies of the private key destroyed when private key operation is complete; for example, check that the private
key does not stay in application memory permanently

 - the private key is password protected with a strong password
 - the keystore is password protected with a strong password

Example:

Attempt to view the contents of the private key using a document viewer program.

Part 2: Traceability

Page 258

G1317

Statement:

Ensure applications store Certificates for subscribers (the owner of the Public Key contained in the Certificate)
when used in the context of signed and/or encrypted email.

Rationale:

This will allow other parties to use the public key to encrypt messages sent to the application.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document. Section (4.5), Version 1.0, July 13, 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Key Management
Interoperability

Evaluation Criteria:

1) Test: [G1317.1]

Is the public key available from the Directory Server application?

Procedure:

See if it is possible to extract the public key certificate from the Directory Server application.

Example:

None

Part 2: Traceability

Page 259

G1318

Statement:

Develop applications such that they provide the capability to manage and store trust points (Certificate
Authority Public Key Certificates).

Rationale:

This will ensure the certificate is valid and expedite verification of the certificate.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Key Management
Interoperability
Maintainability

Evaluation Criteria:

1) Test: [G1318.1]

Is the Certificate Authority public key available from the application?

Procedure:

View the application's trust list to verify DoD PKI Class 3 CA certificates are present.

Example:

For Internet Explorer, view the DoD PKI Class 3 CA certificates by selecting Tools>Internet Options. Click
on the Internet tab and then click on the Publishers button. Click on the Trusted Root Certification
Authorities tab and scroll down to verify that the DoD PKI Class 3 CA certificates are present.

Web server Certificate Authority certificates can usually be viewed by the application's GUI. If a GUI is not offered,
reference the application's manual concerning certificate management.

Part 2: Traceability

Page 260

G1319

Statement:

Ensure applications can recover data encrypted with legacy keys provided by the DoD PKI Key Recovery Manager
(KRM).

Rationale:

Applications may have the need to decrypt legacy information that the application originally encrypted.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Key Management
Interoperability
Maintainability

Evaluation Criteria:

1) Test: [G1319.1]

Is the application able to recover legacy encrypted data?

Procedure:

Acquire the legacy key and demonstrate the ability
to decrypt data that is encoded by that key.

Example:

None

Part 2: Traceability

Page 261

G1320

Statement:

Use a minimum of 128 bits for symmetric keys.

Rationale:

Strong encryption helps to prevent unauthorized data decryption using modern day resources.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Design Tenet: Encryption and HAIPE
Interoperability
Maintainability
Encryption Services

Evaluation Criteria:

1) Test: [G1320.1]

Are symmetric key encryption levels at least 128 bit?

Procedure:

Check the server configuration and verify that the symmetric keys being used are at least 128 bit.

Example:

Verified Web server ciphers under the SSL portion of the configuration pages of the administration server.

For Internet Explorer 5.0 and above, click the Help menu and then click the About Internet Explorer option.
The About box will list the Cipher Strength.

2) Test: [G1320.2]

Is the application using domestic (U.S.) grade ciphers?

Procedure:

Verify that the application supports domestic (U.S.) grade ciphers.

Example:

None.

Part 2: Traceability

Page 262

G1321

Statement:

Enable applications to be capable of performing Public Key operations necessary to verify signatures on DoD PKI
signed objects.

Rationale:

An application must verify the digital signature and check its validity against the current Certificate Revocation
List (CRL) maintained by an on-line repository (e.g., Online Status Check Responder or OSCR).

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Encryption and HAIPE
Maintainability
Design Tenet: Identity Management, Authentication, and Privileges
Encryption Services
Reusability
Interoperability

Evaluation Criteria:

1) Test: [G1321.1]

Does the application verify signed objects?

Procedure:

Check that the application validates signed objects against DoD root certificates.

Check that the signing certificate has not been revoked by checking against Certificate Revocation Lists or using the
Online Certificate Status Protocol (OCSP).

Example:

Make a back-up copy of the certificate. For Windows based applications, stop the application and edit the signature
of the certificate and save the certificate. Start the application back up. The application should fail to start as the
signature check will fail.

For validity checking, confirm a validity check of the certificate was performed by viewing the application's audit log.

Part 2: Traceability

Page 263

G1322

Statement:

Ensure that applications that interact with the DoD PKI using SSL (i.e., HTTPS) are capable of encrypting and
decrypting data using the Triple Data Encryption Algorithm (TDEA).

Rationale:

Applications should use cryptographic modules approved under Federal Information Processing Standard
(FIPS) 140, Level 1.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Maintainability
Design Tenet: Encryption and HAIPE
Design Tenet: Mediate Security Assertions
Encryption Services
Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Evaluation Criteria:

1) Test: [G1322.1]

Does the application use TDEA for encrypting and decrypting data?

Procedure:

Inspect the application's configuration file to confirm that TDEA is used for encrypting and decrypting data.

Example:

Most server based applications have cipher related information stored under SSL, certificates, or security. Verify that
the application is using TDEA.

Part 2: Traceability

Page 264

G1323

Statement:

Generate random symmetric encryption keys when using symmetric encryption.

Rationale:

If the application can not generate random keys, then it is vulnerable to attacks if attackers can determine the
algorithm for generating the random symmetric encryption keys.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Maintainability
Design Tenet: Encryption and HAIPE
Encryption Services
Interoperability

Evaluation Criteria:

1) Test: [G1323.1]

Does the application generate random symmetric encryption keys?

Procedure:

Verify that the random seed is generated (e.g., by viewing the application's vendor documentation).

Example:

Most server based applications either user MOD_SSL or OPEN_SSL. These two toolkits properly use random seed
generators.

Apache based servers may require the administrator to type random keystrokes on the keyboard. This process is
generating the random seed.

Part 2: Traceability

Page 265

G1324

Statement:

Protect symmetric keys for the life of their use.

Rationale:

Symmetric key encryption algorithms are based on trivially related keys for both encryption and decryption.
The advantage of symmetric key encryption is that it is much less computationally intensive for encryption and
decryption compared to asymmetric algorithms. The disadvantage is that the shared symmetric key must be kept
secure during storage and transmission.

To prevent disclosure, new symmetric keys are often generated for each unique session and exchanged using
another encryption algorithm. Store symmetric keys that are used long term carefully to prevent disclosure.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Encryption Services
Interoperability
Design Tenet: Encryption and HAIPE
Maintainability

Evaluation Criteria:

1) Test: [G1324.1]

Are symmetric keys stored in unprotected locations?

Procedure:

Check for hard coded symmetric keys in source code or files with weak permissions.

Example:

Symmetric keys should be generated for each session and destroyed when the session is destroyed, never stored in a
file with weak permissions or hard coded in source code.

Part 2: Traceability

Page 266

G1325

Statement:

Encrypt symmetric keys when not in use.

Rationale:

Symmetric keys enable both sides of the conversation to have knowledge of the key for encryption. It can not
be given out freely, which means if it is going to be stored for repeated use, it should be encrypted first before
storage.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Maintainability
Encryption Services
Design Tenet: Encryption and HAIPE

Evaluation Criteria:

1) Test: [G1325.1]

Does the application encrypt symmetric keys when not in use?

Procedure:

Check that the application encrypts symmetric keys during storage.

Example:

None.

Part 2: Traceability

Page 267

G1326

Statement:

Ensure applications are capable of producing Secure Hash Algorithm (SHA) digests of messages to support
verification of DoD PKI signed objects.

Rationale:

Symmetric keys enable both sides of the conversation to have knowledge of the key for encryption. It can not
be given out freely, which means if it is going to be stored for repeated use, it should be encrypted first before
storage.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Interoperability
Design Tenet: Encryption and HAIPE
Maintainability
Encryption Services
Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [G1326.1]

Does the application use SHA digest?

Procedure:

Visually validate that the SHA digest is used for symmetric keys.

Example:

Most application servers allow one to configure the hash to SHA1. Please note that the default for most applications is
MD5.

Part 2: Traceability

Page 268

G1327

Statement:

Enable an application to obtain new Certificates for subscribers.

Rationale:

If the application generates subscriber keys, the application shall demonstrate the ability to generate keys, request
new certificates, and obtain new certificates through interaction with the DoD PKI. If the generated keys are for
encryption applications, the application shall demonstrate its ability to provide keys to the DoD PKI KRM.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.3.2.2, Version 1.0, 13 July 2000.

Referenced By:

Certificate Processing
Maintainability
Interoperability
Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [G1327.1]

Can the application request and obtain new certificates for subscribers?

Procedure:

For application servers, verify that the application can successfully request a certificate via the appropriate certificate
request page from a DoD PKI CA.

For application servers, verify that the application can successfully download an issued certificate from a DoD PKI CA.

Example:

Instructions in obtaining a DoD PKI certificate for a user are available at https://infosec.navy.mil/PKI/users.html.

Instructions for obtaining a DoD PKI certificate for web servers including Netscape, Lotus, and IIS is available at
https://infosec.navy.mil/PKI/training.html.

https://infosec.navy.mil/PKI/users.html
https://infosec.navy.mil/PKI/training.html

Part 2: Traceability

Page 269

G1328

Statement:

Enable an application to retrieve Certificates for use, including relying party operations.

Rationale:

The ability to retrieve certificates from DoD certificate repositories further ensures the authenticity of the certificate .

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.3.2.3, Version 1.0, 13 July 2000.

Referenced By:

Interoperability
Certificate Processing
Maintainability
Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [G1328.1]

Can the application retrieve Certificates from a DoD PKI certificate repository?

Procedure:

Verify that the application can communicate with a DoD PKI certificate repository such as GDS.

Example:

This test procedure is only required for applications that must send encrypted e-mail. For this scenario,
assume that Outlook is used; instructions for using Outlook 2000 are available at https://infosec.navy.mil/PKI/
Outlook_2000_0704.pdf

Part 2: Traceability

Page 270

G1330

Statement:

Ensure applications are capable of checking the status of Certificates using a Certificate Revocation List (CRL)
if not able to use the Online Certificate Status Protocol (OCSP).

Rationale:

Applications must verify the validity of the certificate prior to establishing trust with another entity. CRL is the
legacy mechanism for validating certificates. Applications should favor OSCP for new development.

Applications operating in environments with network connectivity to aCRL distribution point should be able to
obtain a current CRL. Applications should be able, without user intervention, to obtain a current CRL to check
the status of a certificate that contains a CRL distribution point extension. Applications with network connectivity
unable to find CRL distribution points automatically should be capable of being configured with a distribution point
that the application then uses to obtain CRLs as needed.

Systems on DoD networks must use a local Web cache to obtain the latest DoD PKI issued CRL per Joint Task
Force Global Network Operations (JTF GNO) Communications Tasking Order (CTO) 07-015 of 11 December
2007 (specifically Task 11; DoD PKI Certificate required for access). Configuration instructions for known Web
cache products in use and alternative CRL caching capabilities are available from the following location: https://
www.us.army.mil/suite/page/474113 (Army or Defense On Line [AKO or DKO] site registration and DoD PKI
Certificate required for access).

Note: This guidance is derived from DoD Instruction 8520.2, Public Key Infrastructure (PKI) and Public
Key (PK) Enabling, 1 April 2004. [R1206]

Referenced By:

Design Tenet: Network Connectivity
Certificate Processing
Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Maintainability

Evaluation Criteria:

1) Test: [G1330.1]

Can the application perform Certificate status checking with a CRL?

Procedure:

Verify that the application can download a CRL successfully .

Example:

Visually inspect the application is configured to use CRLs for validity checking. This can be achieved by looking at the
directory in which the application stores the CRLs.

https://www.jtfgno.mil/operations/cto/2007/CTO_07_15/CTO_PKI_Phase2v17%20(11Dec07).rtf
https://www.us.army.mil/suite/page/474113
https://www.us.army.mil/suite/page/474113

Part 2: Traceability

Page 271

G1331

Statement:

Ensure applications are able to check the status of a Certificate using the Online Certificate Status Protocol
(OCSP).

Rationale:

Applications must verify the validity of the certificate prior to establishing trust with another entity. CRL is the legacy
mechanism for validating certificates. Applications should favor OCSP for new development.

Applications may use an OSC responder to check the status of a particular certificate when the DoD has an
operational responder. Applications shall prepare and transmit the request to the responder using HTTP in
accordance with the DoD Class 3 PKI Infrastructure Interface Specification.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.3.2.4.2, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Maintainability
Certificate Processing

Evaluation Criteria:

1) Test: [G1331.1]

Can the application perform Certificate status checking with OCSP?

Procedure:

Verify that the application can performing OCSP queries to an OSC Responder successfully.

Example:

Visually inspect the application is configured to use OCSP for validity checking. This can be achieved by looking at the
configuration file to see that the application is configured to use OCSP. One can also visually look at the application's
log file to validate that the application is making OCSP queries.

Part 2: Traceability

Page 272

G1333

Statement:

Only use a Certificate during the Certificate's validity range, as bounded by the Certificate's "Validity - Not Before"
and "Validity - Not After" date fields.

Rationale:

Expired certificates should not be accepted except in cases where legacy data was archived.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Certificate Processing
Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Maintainability

Evaluation Criteria:

1) Test: [G1333.1]

Do the date and time of the use of the Certificate fall within the Certificate's validity period?

Procedure:

Visually inspect the certificate's validity dates. The certificate should be valid and not expired.

Example:

Each digital certificate has a lifetime. When viewing a certificate, the certificate will have a valid from date and a valid
to date. The current date should fall within this range.

Part 2: Traceability

Page 273

G1335

Statement:

Make applications capable of being configured to operate only with PKI Certificate Authorities specifically approved
by the application's owner/managing entity.

Rationale:

Using approved PKI Certificate Authorities ensures certificate authenticity and ensures that the certificate is
chained to the issuer.DoD trust points ensure certificates are chained to the issuer of the certificate and are
authentic.

For example, DoD applications are configured to use DoD PKI Certificate Authorities only per the DoD Class 3 PKI
- Public Key-Enabled Application Requirments Document Version 1.0, 13 July 2000.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Certificate Processing
Reusability
Maintainability

Evaluation Criteria:

1) Test: [G1335.1]

Is the application configured to operate only with approved PKI Certificate Authorities?

Procedure:

Visually inspect that only the DoD PKI certificates are trusted by the application.

Example:

Applications typically allow one to view the trust points via the administrative interface to the application. CA
certificates are typically located under Certificate Management, SSL, or Security.

Part 2: Traceability

Page 274

G1338

Statement:

Applications and Certificates need to be able to support multiple organizational units.

Rationale:

DoD requirements dictate that certificates shall support multiple organizational units.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Maintainability
Certificate Processing
Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Evaluation Criteria:

1) Test: [G1338.1]

Can the application process a Certificate that contains multiple organizational units in the Distinguished Name?

Procedure:

Visually inspect the DoD PKI CA certificates stored in the application. You will notice that each certificate contains
multiple organizational units (OU=DoD, OU=PKI)

Example:

The majority of certificate request forms do not contain entries for multiple organizational units. In this case, include all
of the organizational unit information in the single line. For example, for Navy, please enter the following information
next to the Organizational Unit line: Navy, OU=DoD, OU=PKI.

Once the certificate is issued, visually inspect this certificate to verify that the certificate contains these Organizational
Unit values.

Part 2: Traceability

Page 275

G1339

Statement:

Practice defensive programming by checking all method arguments.

Rationale:

Data validation is not limited to Graphical User Interfaces. API(s) and library functions are also susceptible to
corruption. The integrity of application can benefit from identifying invalid data as early as possible.

Referenced By:

Validate Input
Interoperability
API Security
Other Design Tenets

Evaluation Criteria:

1) Test: [G1339.1]

Does the application perform range validation?

Procedure:

Check for unit tests.

Check thrown exceptions.

Purposely send invalid data to API(s) to test the integrity and handling of invalid data.

Example:

None.

Part 2: Traceability

Page 276

G1340

Statement:

Log all exceptional conditions.

Rationale:

Logging exceptional conditions can help to identify security problems, trace the source of the exception, and
trigger security alerts.

Referenced By:

API Security
Maintainability
Handle Exceptions
Other Design Tenets

Evaluation Criteria:

1) Test: [G1340.1]

Does the application perform logging of exceptional conditions?

Procedure:

Check exception handlers for logging support.

Example:

None.

Part 2: Traceability

Page 277

G1341

Statement:

Use a security manager support to restrict application access to privileged system resources.

Rationale:

Desktop applications by default do not install a security manager. Installing a security manager could prevent
unsecured access to system resources such as network and file system. Desktop applications can benefit from
using a security manager to ensure that system resources are protected.

Referenced By:

Java Security
Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Design Tenet: Cross-Security-Domains Exchange

Evaluation Criteria:

1) Test: [G1341.1]

Does an installed security manager restrict application access to privileged system resources?

Procedure:

Check application main method for installation of a security manager.

Example:

None.

Part 2: Traceability

Page 278

G1342

Statement:

Restrict direct access to class internal variables to functions or methods of the class itself.

Rationale:

One of the primary tenets in Object Oriented Programming is encapsulation. Restricting access to internal
variables not only secure the Class/Object against corruption (no data validation), it is also a maintenance issue.
Hiding the implementation details allows the flexibility of underlying implementation to change.

Referenced By:

Maintainability
Java Security
Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [G1342.1]

Do classes directly expose internal data members?

Procedure:

Make sure all internal class variables are declared private or protected.

Example:

None.

Part 2: Traceability

Page 279

G1343

Statement:

Declare classes final to stop inheritance and prevent methods from being overridden.

Rationale:

Utility classes and classes that do not intend to be extended (classes used for user authentication) should lock
down their implementation. Locking implementation can prevent methods from being overridden. Not locking down
implementation can cause corruption of internal class data or allow errant code to run. For example, imagine the
possibility of a class that performs credit card processing that can be overridden.

Class implementation can be locked down by declaring the class or methods final.

Referenced By:

Interoperability
Maintainability
Java Security

Evaluation Criteria:

1) Test: [G1343.1]

Are sensitive, security related, and utility classes declared final?

Procedure:

Check classes used in Security related processing (authentication, authorization) final keyword.

Check classes that have sensitive data (social security numbers, medical data, and salary information) for final
keyword.

Check Utility classes for final keyword.

Example:

None.

Part 2: Traceability

Page 280

G1344

Statement:

Encrypt sensitive data stored in configuration or resource files.

Rationale:

Sensitive data used for application configuration files (XML), user profiles, or resource files should be protected
from tampering. The sensitive data should be encrypted and or a message digest or checksum should be
calculated to check for tampering. Application should handle generation, accessing and storing data to these files.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Application Resource Security
Interoperability
Design Tenet: Encryption and HAIPE

Evaluation Criteria:

1) Test: [G1344.1]

Is sensitive data in configuration files and user profiles?

Procedure:

Check properties files, XML configuration files or user profiles for sensitive data in the clear.

Check for an application to edit, and creation of the file.

Example:

None.

Part 2: Traceability

Page 281

G1346

Statement:

Audit database access.

Rationale:

Auditing is critical for data access traceability. If the RDBMS was attacked, auditing is essential not only for figuring
out what had occurred but also to recover lost data. Database access auditing provides logs for each access or
change to the database by a given user (or an IP address for systems without user authentication).

Often current middle tier technologies (e.g., J2EE, .Net, CORBA, etc.) share database connections and may only
have a single database user. Thus the burden is on the middle tier to know the identity of each user and be able to
pass this information on the database (e.g., design each table to have data items such as updated by, created by,
etc.).

Referenced By:

RDBMS Security
Other Design Tenets
Design Tenet: Identity Management, Authentication, and Privileges
Maintainability

Evaluation Criteria:

1) Test: [G1346.1]

Does the application database include actual user rather than database connection owner?

Procedure:

Check system documentation, database tables, and audit logs to verify that database access audit entries are created
for each database access.

Example:

None

Part 2: Traceability

Page 282

G1347

Statement:

Secure remote connections to a database.

Rationale:

Just because the database is behind the corporate firewall does not mean someone inside the firewall cannot
access or listen in on the wire.

Net-centricity implies that a database should be on the network and not constrained to be sitting behind an
application server. This means that many unanticipated users may eventually access the database. Thus,
database security should not be based on isolation.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
RDBMS Security
Interoperability
Design Tenet: Decentralized Operations and Management

Evaluation Criteria:

1) Test: [G1347.1]

Is data exchanged between the database and client secure?

Procedure:

Check for secure protocol (e.g., SSL) between application and database.

Check for secure data access by IP address.

Check for configuration in the database (user) which limits user from a specified host.

Example:

None.

Part 2: Traceability

Page 283

G1348

Statement:

Log database transactions.

Rationale:

Transaction logging is generally handled by the database management system and records all changes made to
the database, critical for data recovery and traceability.

Referenced By:

Maintainability
Other Design Tenets
RDBMS Security

Evaluation Criteria:

1) Test: [G1348.1]

Are database transactions logged?

Procedure:

Commercial database management systems have a feature to log database transactions. Check to determine whether
the feature has been turned on in the database management system.

Example:

None.

Part 2: Traceability

Page 284

G1349

Statement:

Validate all input that will be part of any dynamically generated SQL.

Rationale:

Not validating or filtering parameters used in dynamically generated SQL statements can lead to SQL injection
attacks.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
RDBMS Security
Other Design Tenets
Interoperability
Validate Input

Evaluation Criteria:

1) Test: [G1349.1]

Does the database use filtering or data validation code?

Procedure:

Filter out character like single quote, double quote, slash, back slash, semi colon, extended character like NULL, carry
return, new line, etc, in all input strings.

Example:

Part 2: Traceability

Page 285

G1350

Statement:

Implement a strong password policy for RDBMS.

Rationale:

Clean database installation often contains no passwords for root users. Also, new user accounts often defaults to
no password or standard password. Having no passwords allows users access any data. Database users should
always be given strong passwords. This implies a non null password, locking unused user accounts and ensuring
that system user accounts are not using default passwords

Referenced By:

RDBMS Security
Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Evaluation Criteria:

1) Test: [G1350.1]

Does the database user table include passwords?

Procedure:

Check for null or empty values for passwords in the user table.

Use a commercially available or open source default password analysis tool to ensure that all user accounts do not
retain default passwords and to ensure that all passwords are strong.

Example:

None.

Part 2: Traceability

Page 286

G1351

Statement:

Enhance database security by using multiple user accounts with constraints.

Rationale:

Constrain access to individual tables and functions by creating multiple user accounts for an application and
constraining the accounts to specific functions. As a general policy, user accounts should be constrained to
the minimal required database access. For example, creation of a read only account should be constrained by
granting only select on the tables of interest to the read only user. This aids in password management as well
as limiting the potential impact of SQL injection attacks. By granting only insert on a table, for example, and not
granting select, the user could in effect create a write only database.

Each application will have different requirements in regards to grants and access to tables. If one application is
compromised, it will not affect the other applications.

It also has traceability to determine which application has allowed a security violation.

Referenced By:

Interoperability
Design Tenet: Identity Management, Authentication, and Privileges
RDBMS Security

Evaluation Criteria:

1) Test: [G1351.1]

Does each database application user have account constraints in accordance with the user function?

Procedure:

Check each database application user to ensure that the account constraints are in accordance with the user function
and do not have unwarranted privileges. For example, check that read only application user accounts have only read
access enabled.

Example:

None.

Part 2: Traceability

Page 287

G1352

Statement:

Use database clustering and redundant array of independent disks (RAID) for high availability of data.

Rationale:

Database clusters combined with RAID technology (e.g., data striping and mirroring) can help ensure continued
operation of a system that suffers hardware or software failure.

Referenced By:

RDBMS Security
Design Tenet: Availability
Maintainability
Design Tenet: Scalability
Interoperability

Evaluation Criteria:

1) Test: [G1352.1]

Is the system designed to support high availability?

Procedure:

Check for the existence of a cluster and/or failover capability.

Check for the existence of RAID data storage for the database.

Example:

None.

Part 2: Traceability

Page 288

G1356

Statement:

Use the SOAP standard for all Web services.

Rationale:

The Web services security specifications are designed as an extension of SOAP. The specs are unusable without
SOAP.

Referenced By:

Reusability
XML Web Service Security
Design Tenet: Open Architecture
Interoperability
Maintainability
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1356.1]

Does the Web service user generate SOAP formatted XML messages?

Procedure:

Generate a test message and check it for SOAP compliance.

Example:

None.

2) Test: [G1356.2]

Does the Web service provider generate SOAP formatted XML?

Procedure:

Generate a test message and check it for SOAP compliance.

Example:

None.

Part 2: Traceability

Page 289

G1357

Statement:

Do not rely solely on transport level security like SSL or TLS.

Rationale:

Web services inherently involve multiple intermediaries between the message sender and the ultimate destination.
The intermediaries may not use transport level security. SSL and TLS do not provide end-to-end security, only
security at the transport layer and only point-to-point. The use of SSL or TLS should depend on the needs of
the system. For sensitive applications, augment the use of SSL/TLS with defense in depth measures such as
message-level security mechanisms.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
XML Web Service Security
Design Tenet: Encryption and HAIPE
Design Tenet: Mediate Security Assertions

Evaluation Criteria:

1) Test: [G1357.1]

Does the Web service user generate encrypted XML messages?

Procedure:

Generate a test message and check it for encryption.

Example:

2) Test: [G1357.2]

Does the Web service provider generate encrypted XML messages?

Procedure:

Generate a test message and check it for encryption.

Example:

Part 2: Traceability

Page 290

G1359

Statement:

Bind SOAP Web service security policy assertions to the service by expressing them in the associated WSDL file.

Rationale:

A Web service may be registered in zero, one, or multiple UDDI registries. By placing the security policy assertions
in the Web service's WSDL file, they are readily available to all the consumers of the service regardless how the
service was discovered

Referenced By:

XML Web Service Security
Design Tenet: Mediate Security Assertions
Interoperability
Maintainability
Other Design Tenets

Evaluation Criteria:

1) Test: [G1359.1]

Are Web service security policy assertions bound in the service WSDL file?

Procedure:

Check the Web Service's WSDL file for policy assertions.

Example:

None

Part 2: Traceability

Page 291

G1362

Statement:

Validate incoming XML-based messages using a schema.

Rationale:

Prevent malicious agents from compromising the integrity of a service.

Referenced By:

XML Web Service Security
Design Tenet: Identity Management, Authentication, and Privileges
Validate Input
Interoperability

Evaluation Criteria:

1) Test: [G1362.1]

Does the Web service provider validate incoming messages?

Procedure:

Identify the existence of an XML Schema file and examine code to verify that all incoming messages are checked to
be XML Valid.

Example:

None

Part 2: Traceability

Page 292

G1363

Statement:

Do not use clear text passwords.

Rationale:

Prevent a hacker from intercepting and seeing a real password.

Referenced By:

XML Web Service Security
Design Tenet: Encryption and HAIPE
Interoperability
Design Tenet: Identity Management, Authentication, and Privileges
Other Design Tenets

Evaluation Criteria:

1) Test: [G1363.1]

Does the Web service user utilize a username/password token?

Procedure:

Generate a test message and check it for clear text passwords.

Example:

None

Part 2: Traceability

Page 293

G1364

Statement:

Hash all passwords using the combination of a timestamp, a nonce and the password for each message
transmission.

Rationale:

This Guidance helps to prevent unwanted interception or discovery of clear-text-hashed passwords.

Referenced By:

Design Tenet: Encryption and HAIPE
XML Web Service Security
Other Design Tenets
Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Evaluation Criteria:

1) Test: [G1364.1]

Does the Web service user utilize a username/password token?

Procedure:

Generate a test message and check it for a username/password token and verify that is contains a timestamp entry
and a nonce entry.

Example:

None

Part 2: Traceability

Page 294

G1365

Statement:

Specify an expiration value for all security tokens.

Rationale:

Specifying an expiration value for security tokens limits the chance of being able to intercept and use a security
token to impersonate an authenticated user or process.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Other Design Tenets
XML Web Service Security

Evaluation Criteria:

1) Test: [G1365.1]

Does the Web service user utilize an expiration for each security token?

Procedure:

Generate a test message and check it to make sure an expiration is associated with each security token.

Example:

None

Part 2: Traceability

Page 295

G1366

Statement:

Digitally sign all messages where non-repudiation is required.

Rationale:

Prevent hackers from changing intercepting and modifying a message.

Note: Non-repudiation cannot be assured with soft certificates.

Referenced By:

XML Web Service Security
Design Tenet: Identity Management, Authentication, and Privileges
Design Tenet: Encryption and HAIPE
Interoperability

Evaluation Criteria:

1) Test: [G1366.1]

Does the Web service user digitally sign all messages?

Procedure:

Generate a test message and check it for digital signatures.

Example:

None

2) Test: [G1366.2]

Does the Web service provider digitally sign all messages?

Procedure:

Generate a test message and check it for digital signatures.

Example:

None

Part 2: Traceability

Page 296

G1367

Statement:

Digitally sign message fragments that are required not to change during transport.

Rationale:

Signing message fragments allows the consumer of the message fragment to verify the message fragment has not
changed since the producer signed the message fragment.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
XML Web Service Security
Design Tenet: Encryption and HAIPE

Evaluation Criteria:

1) Test: [G1367.1]

Do message fragments sent between producers and subscribers have digital signatures when the message content
must remain unchanged during transport?

Procedure:

Check system requirments for message fragments that must be transmitted unchanged between the producer and
consumer. For these message frangments, check that digital signature are used to detect changes to the message
fragments.

Example:

None

Part 2: Traceability

Page 297

G1369

Statement:

Digitally sign all requests made to a security token service.

Rationale:

Prevent hackers from intercepting a message and requesting a security token.

Referenced By:

Interoperability
Other Design Tenets
XML Web Service Security
Design Tenet: Identity Management, Authentication, and Privileges
Design Tenet: Encryption and HAIPE

Evaluation Criteria:

1) Test: [G1369.1]

Does the Web service user digitally sign all messages?

Procedure:

Generate a test message and check it for digital signatures.

Example:

None

2) Test: [G1369.2]

Does the Web service provider digitally sign all messages?

Procedure:

Generate a test message and check it for digital signatures.

Example:

None

Part 2: Traceability

Page 298

G1371

Statement:

Use the Digital Signature Standard for creating Digital Signatures.

Rationale:

Following Industry standards ensures interoperability.

Referenced By:

Design Tenet: Encryption and HAIPE
Interoperability
XML Web Service Security
Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [G1371.1]

Does the Web service user generate signatures using the Digital Signature Standard?

Procedure:

Generate a test message and check it for compliance with the Digital Signature Standard.

Example:

None

2) Test: [G1371.2]

Does the Web service provider generate signatures using the Digital Signature Standard?

Procedure:

Generate a test message and check it for compliance with the Digital Signature Standard.

Example:

None

Part 2: Traceability

Page 299

G1372

Statement:

Use an X.509 Certificate to pass a Public Key.

Rationale:

This ensures that the owner passing the key is who he says.

Referenced By:

XML Web Service Security
Other Design Tenets
Design Tenet: Identity Management, Authentication, and Privileges
Maintainability
Design Tenet: Encryption and HAIPE
Interoperability

Evaluation Criteria:

1) Test: [G1372.2]

Does the Web service provider send a public key as part of its messages?

Procedure:

Generate a test message and check it for an X.509.

Example:

None

2) Test: [G1372.1]

Does the Web service user send a public key as part of its messages?

Procedure:

Generate a test message and check it for an X.509.

Example:

None

Part 2: Traceability

Page 300

G1373

Statement:

Encrypt messages that cross an IA boundary.

Rationale:

Prevent hackers from reading sensitive information.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
XML Web Service Security
Design Tenet: Encryption and HAIPE

Evaluation Criteria:

1) Test: [G1373.1]

Does the Web service user encrypt all messages?

Procedure:

Generate a test message and check it for encryption.

Example:

None

2) Test: [G1373.2]

Does the Web service provider encrypt all messages?

Procedure:

Generate a test message and check it for encryption.

Example:

None

Part 2: Traceability

Page 301

G1374

Statement:

Individually encrypt sensitive message fragments intended for different intermediaries.

Rationale:

Individually encrypting message fragments allows targeting individual fragments at different intermediaries along
the message path to the final destination.

Referenced By:

Interoperability
XML Web Service Security
Design Tenet: Encryption and HAIPE
Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [G1374.1]

Are sensitive fragments of the message encrypted?

Procedure:

Observe messages that are sent to see if the sensitive fragments of the message are encrypted.

Example:

None

Part 2: Traceability

Page 302

G1376

Statement:

Do not encrypt key elements that are needed for correct SOAP processing.

Rationale:

It is possible to encrypt the entire SOAP message, various portions of the SOAP message or the contents of the
data transported within the SOAP message. Encrypting the entire SOAP message requires that any intermediate
processing of the SOAP message requires decryption of the entire message.

Referenced By:

XML Web Service Security
Design Tenet: Encryption and HAIPE
Interoperability
Other Design Tenets

Evaluation Criteria:

1) Test: [G1376.1]

Does the Web service user encrypt the entire message?

Procedure:

Generate a test message and check it to make sure the XML tags are not encrypted.

Example:

None

2) Test: [G1376.2]

Does the Web service provider encrypt the entire message?

Procedure:

Generate a test message and check it to make sure the XML tags are not encrypted.

Example:

None

Part 2: Traceability

Page 303

G1377

Statement:

Use LDAP 3.0 or later to perform all connections to LDAP repositories.

Rationale:

Using industry-proven LDAP standards helpe ensure interoperability of the directory repository with its consumers.
 LDAP v3 addresses some of the limitations of LDAP v2 in the areas of internationalization and authentication. It
also allows adding new features without also requiring changes to the existing protocol through the use of using
extensions and controls while maintaining backward compatibility with LDAP v2.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Reusability
LDAP Security

Evaluation Criteria:

1) Test: [G1377.1]

Check port 636 if supporting secure LDAP (SLDAP)

Procedure:

Test the connection using an SLDAP client.

Example:

None

Part 2: Traceability

Page 304

G1378

Statement:

Encrypt communication with LDAP repositories.

Rationale:

Encryption of communication to LDAP servers helps prevent disclosure of data during transmission.

Referenced By:

Maintainability
Interoperability
Design Tenet: Encryption and HAIPE
Design Tenet: Identity Management, Authentication, and Privileges
LDAP Security

Evaluation Criteria:

1) Test: [G1378.1]

Are connections to LDAP repositories encrypted?

Procedure:

Verify that connections to LDAP repository use Transport Layer Security (TLS) or Secure Sockets Layer (SSL).

Example:

Part 2: Traceability

Page 305

G1379

Statement:

Use SAML version 2.0 for representing security assertions.

Rationale:

SAML 2.0 supports XML assertions for supporting cross domain access and Web services. The value of this type
of access is that the passing of an assertion eliminates the need to create another account in another domain.

Referenced By:

Interoperability
Design Tenet: Mediate Security Assertions
Security Assertion Markup Language (SAML)
Design Tenet: Cross-Security-Domains Exchange

Evaluation Criteria:

1) Test: [G1379.1]

Can the SAML message be validated against SAML V2.0 schema?

Procedure:

Validate SAML message against SAML V2.0.

Example:

Part 2: Traceability

Page 306

G1380

Statement:

Use the XACML 2.0 standard for SAML-based rule engines.

Rationale:

XACML-based rules can define the mechanism for creating the rule and policy set that enable
meaningful authorization decisions. XAMCL is also integrated with SAML to support role-based access control
or hierarchical resources, such as portions of XML documents.

Referenced By:

Design Tenet: Mediate Security Assertions
Interoperability
Security Assertion Markup Language (SAML)
Design Tenet: Identity Management, Authentication, and Privileges
Design Tenet: Cross-Security-Domains Exchange

Evaluation Criteria:

1) Test: [G1380.1]

Does the SAML-based rules engine use the XACML 2.0 standard?

Procedure:

Emulate a rule and run against rule engine using SOAP messaging.

Example:

Part 2: Traceability

Page 307

G1381

Statement:

Encrypt all sensitive persistent data.

Rationale:

When data is persisted, there is always a chance that the security of the system that stores the data may be
compromised. To minimize the risk, all sensitive data such as passwords and personal information should be
encrypted when it is persisted.

Referenced By:

Interoperability
Design Tenet: Encryption and HAIPE
Data Tier

Evaluation Criteria:

1) Test: [G1381.1]

Is all sensitive data that is persisted encrypted?

Procedure:

Look at all data stores and check for encrypted passwords and other sensitive data..

Example:

Part 2: Traceability

Page 308

G1382

Statement:

Be associated with one or more Communities of Interest (COIs).

Rationale:

The DoD Net-Centric Data Strategy emphasizes the establishment of Communities of Interest (COIs). This
strategy introduces management of data within Communities of Interest (COIs) rather than standardizing data
elements across the DoD. Thus all DoD Programs must map to one of more COIs. DoD Programs should
participate in COIs as a normal course of doing business. They will identity relevant COIs; actively collaborate with
them to promote reuse and cross-coordination of metadata; sponsor participation of system developers in the
COI process and where appropriate contribute engineering expertise to the COI as a stakeholder. New programs
should include community collaboration requirements in acquisition documents as required.

Referenced By:

Design Tenet: Make Data Interoperable
Design Tenet: Be Responsive to User Needs
Design Tenet: Make Data Understandable
Reusability
Metadata Registry
Interoperability

Evaluation Criteria:

1) Test: [G1382.1]

Is the Program associated with a COI?

Procedure:

Check the DoD Metadata registry to determine whether program is associated with any COI(s).

Example:

None

Part 2: Traceability

Page 309

G1383

Statement:

Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

Rationale:

The use of the DoD Metadata Registry helps to avoid name collisions and conflicts.

The assignation of a unique registered namespace permits a program to be uniquely identified and categorized.
The DoD's Net-Centric Data Strategy requires that data products be stored in shared spaces to provide access
to all authorized users and that these data products be tagged with metadata to enable discovery of data
by authorized users. The use of a unique registered namespace provides an absolute identifier to products
associated with a particular product and is an XSD schema requirement.

Referenced By:

Interoperability
Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable
Reusability
Metadata Registry
Design Tenet: Make Data Visible
Using XML Namespaces
Design Tenet: Make Data Accessible
Design Tenet: Make Data Trustable
Design Tenet: Provide Data Management
Design Tenet: Be Responsive to User Needs

Evaluation Criteria:

1) Test: [G1383.1]

Does the Program have an assigned namespace for its XML data assets?

Procedure:

Check DoD Metadata Registry to determine whether the Program is associated with COI(s).

Example:

None

Part 2: Traceability

Page 310

G1384

Statement:

Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.

Rationale:

The DoD Net-Centric Data Strategy requires that XML information resources within a COI in the DoD Metadata
Registry be examined by DoD projects for possible reuse to help foster common standards within a COI and
promote interoperability.

Note: The proposed DoD Metadata Registry tools have not been formally released. The Beta version thereof
is in testing. Automatic Waivers of this requirement will be permitted until the tools are formally released.

Referenced By:

Design Tenet: Make Data Interoperable
Interoperability
Reusability
Design Tenet: Provide Data Management
Design Tenet: Make Data Understandable
Design Tenet: Be Responsive to User Needs
Metadata Registry
Using XML Namespaces

Evaluation Criteria:

1) Test: [G1384.1]

Has the program reused information resources from the DoD Metadata Registry?

Procedure:

Check the XSDs associated with the program to determine whether XSDs referenced by other namespaces have
been used. Check the DoD Metadata Registry to determine whether the Program has registered the reuse of
XML information resources belonging to other namespaces. Reuse is indicated by formally subscribing to selected
components in the registry.

Example:

None

Part 2: Traceability

Page 311

G1385

Statement:

Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

Rationale:

The DoD Net-Centric Data Strategy requires that XML Information Resources developed during the course of
a program be identified, examined for usefulness by other DoD Programs in the same or related COIs and be
submitted for inclusion in the XML Gallery of the DoD Metadata Registry.

Referenced By:

Design Tenet: Provide Data Management
Design Tenet: Make Data Interoperable
Metadata Registry
Design Tenet: Make Data Trustable
Interoperability
Design Tenet: Make Data Visible
Design Tenet: Make Data Accessible
Using XML Namespaces
Reusability

Evaluation Criteria:

1) Test: [G1385.1]

Has the Program submitted new information resources to the DoD Metadata Registry?

Procedure:

Check the XSDs associated with the program namespace to determine whether they have been registered in the DoD
Metadata Registry XML Gallery.

Example:

None

Part 2: Traceability

Page 312

G1386

Statement:

Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata Registry,
using those in the relational database technology which can be reused in the Program.

Rationale:

The DoD Net-Centric Data Strategy requires that DoD Programs examine data element information resources
within a COI in the DoD Metadata Registry for possible reuse to help foster common standards within a COI and
promote interoperability. Elements include US State Codes and Country Codes. This reuse is preferential to
reusing existing industry standard data elements or developing new data elements.

Referenced By:

Design Tenet: Provide Data Management
Design Tenet: Be Responsive to User Needs
Reusability
Design Tenet: Make Data Understandable
Interoperability
Metadata Registry
Design Tenet: Make Data Interoperable

Evaluation Criteria:

1) Test: [G1386.1]

Has the Program reused common database elements?

Procedure:

Check the DoD Metadata Registry Data Element Gallery to determine whether the program has registered database
elements for reuse. Reuse is indicated by formally subscribing to selected components in the registry.

Check the program database to see whether registered have been included therein.

Example:

None

Part 2: Traceability

Page 313

G1387

Statement:

Identify data elements created during Program development for registering in the Data Element Gallery of the
DoD MetaData Registry.

Rationale:

The DoD Net-Centric Data Strategy requires that Programs identify and examine developed data elements for
usefulness by other DoD Programs in the same or related COIs and submit the data elements for inclusion in the
Data Element Gallery of the DoD Metadata Registry.

Referenced By:

Design Tenet: Make Data Visible
Interoperability
Metadata Registry
Design Tenet: Make Data Accessible
Design Tenet: Make Data Trustable
Design Tenet: Provide Data Management
Reusability

Evaluation Criteria:

1) Test: [G1387.1]

Has the Program submitted common database elements to the DoD Metadata Registry?

Procedure:

Check the DoD Metadata Registry Data Element Gallery to determine whether the program has submitted database
elements for reuse.

Example:

None

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

Part 2: Traceability

Page 314

G1388

Statement:

Use predefined commonly used database tables in the DoD Metadata Registry.

Rationale:

The DoD Net-Centric Data Strategy requires that DoD Programs examine data table information resources within a
COI in the DoD Metadata Registry for possible reuse to help foster common standards within a COI and promote
interoperability. This reuse is preferable to reusing existing industry standard data elements or developing
new data elements. Some examples are Country Code, US State Code, Purchase Order Type Code,
Security Classification Code. These tables are found in the Reference Data Set Gallery of the DoD
Metadata Registry.

Referenced By:

Design Tenet: Make Data Understandable
Design Tenet: Be Responsive to User Needs
Metadata Registry
Reusability
Interoperability
Design Tenet: Make Data Trustable
Design Tenet: Make Data Interoperable

Evaluation Criteria:

1) Test: [G1388.1]

Has the Program reused common database tables?

Procedure:

Check the DoD Metadata Registry to determine whether the program has registered database tables for reuse. Reuse
is indicated by formally subscribing to selected components in the registry.

Check the program database to see whether registered data tables have been included therein.

Example:

None

Part 2: Traceability

Page 315

G1389

Statement:

Publish database tables which are of common interest by registering them in the Reference Data Set Gallery of
the DoD Metadata Registry.

Rationale:

The DoD Net-Centric Data Strategy requires that DoD Programs identify and examine developed data tables for
usefulness by other DoD Programs in the same or related COIs and be submit the data elements for inclusion in
the Reference Data Set Gallery of the DoD Metadata Registry.

Referenced By:

Design Tenet: Make Data Accessible
Design Tenet: Provide Data Management
Design Tenet: Make Data Visible
Design Tenet: Make Data Interoperable
Design Tenet: Make Data Trustable
Interoperability
Metadata Registry
Design Tenet: Make Data Understandable
Design Tenet: Be Responsive to User Needs
Reusability

Evaluation Criteria:

1) Test: [G1389.1]

Has the Program submitted common database tables to the DoD Metadata Registry?

Procedure:

Check the DoD Metadata Registry Reference Data Set Gallery to determine whether the program has submitted
database tables for reuse.

Example:

None

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

Part 2: Traceability

Page 316

G1390

Statement:

Standardize on the terminology published by relevant Communities of Interest (COIs) listed in the Taxonomy
Gallery of the DoD Metadata Registry.

Rationale:

A taxonomy partitions the body of knowledge associated with a Community of Interest COI and defines the
relationships among component parts. A taxonomy permits classification of concepts associated with a COI.
This in turn provides categories and definitions for discovery tags which aids in information use and retrieval by
authorized users. Program use of COI taxonomies occurs in several places:

1. Taxonomy used to describe information services for discovery.

2. Taxonomies created by the COI as a means to extend the DoD Discovery Metadata Specification (DDMS)
for data asset discovery.

3. Taxonomies used to support mediation.

Referenced By:

Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable
Design Tenet: Provide Data Management
Metadata Registry
Design Tenet: Make Data Accessible
Design Tenet: Be Responsive to User Needs

Evaluation Criteria:

1) Test: [G1390.1]

Has the Program adhered to the standard taxonomies for the COIs associated with the program?

Procedure:

Check the DoD Metadata Registry and Taxonomy Gallery to determine whether taxonomies exist for the COI in which
the Program resides.

Example:

None

Part 2: Traceability

Page 317

G1391

Statement:

Identify taxonomy additions or changes in conjunction with the Communities of Interest (COIs) during the
Program development for potential inclusion in the Taxonomy Gallery of the DoD Metadata Registry.

Rationale:

DoD Programs associated with a specific COI need to identify and submit potential taxonomy changes or additions
to the DoD Metadata Registry to maintain an accurate and effective taxonomy within the COI.

Referenced By:

Design Tenet: Make Data Visible
Design Tenet: Make Data Accessible
Design Tenet: Be Responsive to User Needs
Design Tenet: Make Data Interoperable
Metadata Registry
Design Tenet: Make Data Understandable

Evaluation Criteria:

1) Test: [G1391.1]

Has the Program submitted taxonomy additions or changes to the DoD Metadata Registry?

Procedure:

Check the DoD Metadata Registry and to determine whether the program has submitted taxonomy changes for reuse.

Example:

None

Part 2: Traceability

Page 318

G1566

Statement:

Use alt attributes to provide alternate text for non-text items such as images.

Rationale:

This usage aids users in understanding the Web page even if their browsers cannot display images.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [G1566.1]

Are alt attributes provided for non-text content?

Procedure:

Check for the existence of alt attributes for all Web site non-text content.

Example:

None.

Part 2: Traceability

Page 319

G1569

Statement:

Maintain a comprehensive list of all of the Components that are part of the Node.

Rationale:

Throughout the lifecycle of a Node (from design to instantiation), this action is fundamental to the provisioning of a
shared infrastructure and the avoidance of functional duplication within the Node. This activity has a direct impact
on the design and implementation requirements during acquisition.

Referenced By:

Interoperability
Design Tenet: Service-Oriented Architecture (SOA)
Reusability
Nodes as Stakeholders
Design Tenet: Enterprise Service Management

Evaluation Criteria:

1) Test: [G1569.1]

Is there a list of Components that comprise the Node?

Procedure:

Examine the documents (for example, the Node's design requirements) and look for a list of Components.

Example:

None.

Part 2: Traceability

Page 320

G1570

Statement:

Assume an active management role among the Components within the Node.

Rationale:

Involvement of the Node as a stakeholder in its Components (from design to instantiation) has a bearing on Global
Information Grid (GIG) interoperability. Strong coordination among a Node's Components will likely avoid the
external exposure of inconsistencies or, worse, incomplete, inaccurate, or misunderstood data.

Referenced By:

Nodes as Stakeholders
Interoperability

Evaluation Criteria:

1) Test: [G1570.2]

Do the Components of the Node set forth requirements in their [appropriate acquisition document] for coordinating
with the Node.

Procedure:

Check the [appropriate acquisition document] of the Components and determine if the Node is listed as a stakeholder
or if there are requirements for coordinating with the Node.

Example:

A Component's Capability Development Document (CDD) may state a requirement for participating in a Node which
could satisfy this requirement.

2) Test: [G1570.1]

Do the Components of the Node list the Node as a primary stakeholder in their [appropriate acquisition document]?

Procedure:

Check the [appropriate acquisition document] of the Components and determine if the Node is listed as a stakeholder
or if there are requirements for coordinating with the Node.

Example:

A Component's Capability Development Document (CDD) may state a requirement for participating in a Node which
could satisfy this requirement.

Part 2: Traceability

Page 321

G1571

Statement:

Maintain a comprehensive list of all the Communities of Interest (COIs) to which the Components of a Node
belong.

Rationale:

The Node infrastructure must be engineered to support the information exchange between Communities of
Interests (COIs). If a comprehensive list of COIs is not created and maintained then the infrastructure may no
longer be adequate and may continue to make provisions for COIs that are no longer a part of the Node.

Referenced By:

Net-Centric Information Engineering
Design Tenet: Be Responsive to User Needs

Evaluation Criteria:

1) Test: [G1571.1]

Do the Node's Components have representation registered within the DoD Metadata Registry as members of the
Communities of Interest (COIs)?

Procedure:

Examine the DoD Metadata Registry for members of the Node organization that are members of the pertinent COIs.

Example:

None.

Part 2: Traceability

Page 322

G1572

Statement:

Include the Node as a party to any Service Level Agreements (SLAs) signed by any of the Components of the
Node.

Rationale:

The Node has a stake in performance specifications provided in the Service Level Agreements (SLA). Since the
SLA is a contract that commits the application service provider to a required level of service. The Node must be
able to support that level of service with its infrastructure.

Referenced By:

Net-Centric Information Engineering
Design Tenet: Scalability
Design Tenet: Availability

Evaluation Criteria:

1) Test: [G1572.1]

Does the Node have copies of all Service Level Agreements (SLAs) signed by its Components?

Procedure:

Compare the Service Level Agreements (SLAs) against the service Components supported by the Node.

Example:

None.

Part 2: Traceability

Page 323

G1573

Statement:

Define the enterprise design patterns that a Node supports.

Rationale:

The Node infrastructure must be engineered to support information exchanges between various Communities of
Interest (COIs). The COIs can require any number of Components to fulfill the COIs mission, When a Component
wishes to make its data available over the enterprise, there are different enterprise design pattern which can be
used. For example, the mechanism selected by a Component to exchange information may be publish-subscribe,
broker, or client server. The Node infrastructure must support whichever enterprise design pattern mechanism is
selected.

Referenced By:

Design Tenet: Open Architecture
Design Tenet: Service-Oriented Architecture (SOA)
Net-Centric Information Engineering

Evaluation Criteria:

1) Test: [G1573.1]

Does the Node document which types of enterprise design patterns it supports?

Procedure:

Look through the Node documents for a list of enterprise design patterns it supports.

Example:

None.

Part 2: Traceability

Page 324

G1574

Statement:

Define which enterprise design patterns a Component requires.

Rationale:

A Component should document which enterprise design patterns it intends to capitalize on to meet its mission. For
example, a client interested in using a client-server weather service, could have problems if the weather service
is a real-time publish-subscribe service. This action clarifies for the Node which enterprise design patterns are
required by its Components and provides direction for which patterns to support at the Node level.

Referenced By:

Net-Centric Information Engineering
Design Tenet: Open Architecture
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1574.1]

Does the Component indicate which type of enterprise design pattern it will use?

Procedure:

Look through the Component documentation and that defines what type of enterprise design pattern it uses.

Example:

None.

Part 2: Traceability

Page 325

G1575

Statement:

Designate Node representatives to relevant Communities of Interest (COIs) in which Components of the Node
participate.

Rationale:

COI is the inclusive term used to describe collaborative groups of users who must exchange information in
pursuit of their shared goals, interests, missions, or business processes and who therefore must have shared
vocabulary for the information they exchange. The principal mechanism for recording COI agreements is the
DoD Metadata Registry required by the DoD CIO Memorandum DoD Net-Centric Data Management Strategy:
Metadata Registration. There are registry implementations on the Non-secure Internet Protocol Router Network
(NIPRNet), Secret Internet Protocol Router Network (SIPRNet), and Joint Worldwide Intelligence Communications
System (JWICS).

Referenced By:

Net-Centric Information Engineering
Design Tenet: Be Responsive to User Needs

Evaluation Criteria:

1) Test: [G1575.1]

Does the Node have representation registered within the Metadata Registry as members of the Communities of
Interest (COIs)?

Procedure:

Examine the DoD Metadata Registry for members of the Node organization that are members of the pertinent COIs.

Example:

None.

Part 2: Traceability

Page 326

G1576

Statement:

Provide an environment to support the development, build, integration, and test of net-centric capabilities.

Rationale:

Nodes should provide an environment to support the development, integration, and testing of net-centric
capabilities of its Components. As Nodes themselves and the Components within the Nodes move closer to the
implementation of net-centric capabilities, it becomes increasingly important to provide a development, integration,
and test environment to support those capabilities. This environment should allow for the exercise not just the
Node infrastructure, but also either host locally within the Node, or provide access to, Net-Centric Enterprise
Services (NCES) piloted services. The particulars on how this is done depend on the characteristics of the Node.
For example, mobile or deployed Nodes would provide environments substantially different than fixed land-based
or permanent Nodes.

Referenced By:

Internal Component Environment
CES Definitions and Status
Maintainability
Design Tenet: Joint Net-Centric Capabilities

Evaluation Criteria:

1) Test: [G1576.1]

Are there instructions on how to develop, build, integrate or test Components within the Node?

Procedure:

Look for user guides or installation instructions that cover the Node environment.

Example:

None.

Part 2: Traceability

Page 327

G1577

Statement:

Maintain an Enterprise Service schedule for interim and final enterprise capabilities within the Node.

Rationale:

The current state of Enterprise Services is in flux. Developing Components that rely on those services can
create a circular problem for development. An enterprise service schedule for interim and final capabilities will help
elevate the co-dependencies of the Component lifecycle from the Node lifecycle.

Referenced By:

Maintainability
Coordination of Node and Enterprise Services
Internal Component Environment
CES Parallel Development

Evaluation Criteria:

1) Test: [G1577.1]

Is there an enterprise service schedule or roadmap that covers interim and final capabilities of the Node?

Procedure:

Look for the existence of the schedule or a roadmap for the Node.

Example:

None.

Part 2: Traceability

Page 328

G1578

Statement:

Define a schedule for Components that includes the use of the Enterprise Services defined within the Node's
enterprise service schedule.

Rationale:

The exercise of matching those Enterprise Services required by the Component to those provided by the Node
can help identify and gaps in the Node's functionality. By tying the Component's enterprise services to the Node's
enterprise schedule, critical paths may be identified in the Node's schedule.

Referenced By:

CES Parallel Development
Coordination of Node and Enterprise Services
Maintainability
Internal Component Environment

Evaluation Criteria:

1) Test: [G1578.1]

Does the Component have an enterprise service schedule or roadmap that shows the progression of enterprise
service usage by interim and final capabilities of the Component?

Procedure:

Look for the existence of the schedule or a roadmap for the Component.

Example:

None.

Part 2: Traceability

Page 329

G1579

Statement:

Define which Enterprise Services the Node will host locally when the Node becomes operational.

Rationale:

Locally defined Enterprise Services are inherently faster and less susceptible to network failures and traffic
than local services. If a Component requires performance based or critical enterprise services that the Node
will only provide as a proxy, then development, building, integration and testing should be done to the local
enterprise service specification. If the Node developed enterprise service will not be ready until near the end of the
Component's schedule, take steps to minimize risk.

Referenced By:

Internal Component Environment
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1579.1]

Does the Node specification identify which Enterprise Services will be locally defined within the Node?

Procedure:

Review the Node specification for a list of Enterprise Services that will be locally defined within the Node.

Example:

None.

Part 2: Traceability

Page 330

G1580

Statement:

Define which Enterprise Services will be hosted over the Global Information Grid (GIG) when the Node
becomes operational.

Rationale:

Enterprise Services that are defined using proxies should have interfaces that follow the standards defined by
the enterprise service provider. Therefore, the access to the server should be fairly stable and almost static in
nature with few changes. These are services that should be in the critical path of a Component's mission.

Referenced By:

Internal Component Environment
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1580.1]

Does the Node specification identify which Enterprise Services will be defined using proxies?

Procedure:

Review the Node specification for a list of Enterprise Services that will be defined using proxies.

Example:

None.

Part 2: Traceability

Page 331

G1581

Statement:

Expose legacy system or application functionality through the use of a service that uses a facade design
pattern.

Rationale:

Nodes might contain systems or applications that are in the Sustainment lifecycle phase. These Components
are often referred to as legacy systems or applications. If a Node needs to expose functionality or data form the
legacy Component, changing the internals of such Components to support net-centricity is often impractical with
little return on investment. This design pattern offers a reasonable interim solution.

Referenced By:

Integration of Legacy Systems
Design Tenet: Open Architecture
Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Evaluation Criteria:

1) Test: [G1581.1]

Does the Node use facade design patterns such as the wrapper or adapter pattern to expose the functionality of
legacy systems or applications?

Procedure:

Make sure that all the Components that are exposed to the internal Node Components or to the external network (with
the Node as a proxy) use a facade design pattern such as wrapper or adapter.

Example:

None.

Part 2: Traceability

Page 332

G1582

Statement:

In Node Enterprise Service schedules, include version numbers of standard Enterprise Services interfaces being
implemented.

Rationale:

Given the complexity, varied implementation timing, and leading edge nature of Enterprise Services, the
orchestration of efforts is essential for the successful integration of the Node's Components. The dependencies
captured by such a schedule should clearly show what capabilities will be available and when during the Node's
lifecycle.

Referenced By:

Design Tenet: Network Connectivity
Maintainability
Coordination of Node and Enterprise Services

Evaluation Criteria:

1) Test: [G1582.1]

Are Enterprise Services interface versions provided on the enterprise service schedule for the Node?

Procedure:

Review the Enterprise Services schedule published for the Node and make sure the schedule provides necessary
details including specific version numbers, workarounds, assumptions, constraints and configuration limitations that
are interwoven into the schedule.

Example:

An Enterprise Service might be releasing a new version during the lifecycle of the Node's development; which
version's functionality will be available when is essential for the successful integration of the Node's Components.

2) Test: [G1582.2]

Are Enterprise Services interface versions provided on the enterprise service schedule for the Component?

Procedure:

Review the Enterprise Services schedule published for the Component and make sure the schedule provides
necessary details including specific version numbers, workarounds, assumptions, constraints and configuration
limitations that are interwoven into the schedule.

Example:

An Enterprise Service might be releasing a new version during the lifecycle of the Node's development; which
version's functionality will be available when is essential so the Component can utilize the appropriate available
capabilities.

Part 2: Traceability

Page 333

G1583

Statement:

Provide routine Enterprise Services schedule updates to every Component of a Node.

Rationale:

A fundamental justification for the existence of nodes is to ensure it provides a shared infrastructure for its
Components. If that infrastructure evolves independently of the Components, then they may be developed at
timeframes and rates of evolution that differ from the capabilities of the available shared infrastructure. In addition,
Components may be members of multiple Nodes, providing an additional coordination challenge. Regular updates
to the Componetns of the master schedule will assist in managing this challenge.

Referenced By:

Maintainability
Coordination of Internal Components

Evaluation Criteria:

1) Test: [G1583.1]

Are there multiple iterations of the Enterprise Services schedule developed over time and is the most recent update
timely?

Procedure:

Check for version numbering and release dates of the Enterprise Services schedule. Ensure that a reasonably recent
update is available.

Example:

None.

Part 2: Traceability

Page 334

G1584

Statement:

Provide a transport infrastructure that is shared among Components within the Node.

Rationale:

Transport elements provided by the Node are a means for the Node to implement Global Information Grid
(GIG) Information Assurance (IA) boundary protections, bind Components together, and satisfy other enterprise
requirements. As transport elements are an essential piece of the net-centric puzzle, they also play a key role in
minimizing interoperability issues. A Node's provisioning of the shared transport and related guidance is a key
aspect of its existence.

Referenced By:

Design Tenet: Transport Goal
Node Transport

Evaluation Criteria:

1) Test: [G1584.1]

Does the Node's design provide for a transport infrastructure?

Procedure:

Review the Node's infrastructure design and ensure that the Node provides the necessary transport elements for
shared use by its Components.

Example:

None.

2) Test: [G1584.2]

Are the Node's Components using the Node provisioned transport infrastructure?

Procedure:

Review the design of the Node's Components (see G1569) and ensure that they all utilize the common transport
infrastructure of inter-Nodal communication.

Example:

None.

Part 2: Traceability

Page 335

G1585

Statement:

Provide a transport infrastructure for the Node that implements Global Information Grid (GIG) Information
Assurance (IA) boundary protections.

Rationale:

The Global Information Grid (GIG) is intended to be the outside world for all the Components within the Node.
In order to protect the Components within the Node from the outside world and to protect the outside world from
the Node, the Node should control the IA Boundary.

Referenced By:

Node Transport
Design Tenet: Net-Centric IA Posture and Continuity of Operations
Design Tenet: Transport Goal

Evaluation Criteria:

1) Test: [G1585.1]

Is there an IA device in the acquisition list?

Procedure:

L

ook for an IA device within the parts list for the Node.

Example:

None.

2) Test: [G1585.2]

Is the IA device configured to meet security requirements?

Procedure:

Check the Node's IA installation guide and look for procedures that describe how to configure the IA device for the
Nodes particular needs.

Example:

None.

Part 2: Traceability

Page 336

G1586

Statement:

Provide a transport infrastructure for the Node that is Internet Protocol Version 6 (IPv6) capable in accordance
with the appropriate governing transition plan.

Rationale:

During the transition period in the DoD community (FY06-FY15) networks, services and applications will be in a
mixed environment. All Critical Key Performance Parameters (KPPs) must be able to operate in an Internet
Protocol Version 4 (IPv4) only network, an Internet Protocol Version 6 (IPv6) only network, and a dual-stack
network.

Referenced By:

Design Tenet: IPv6
Design Tenet: Transport Goal
IPv4 to IPv6 Transition

Evaluation Criteria:

1) Test: [G1586.1]

Does the system operate in an Internet Protocol Version 6 (IPv6) only Network?

Procedure:

Critical Functions will be tested in a Network that only supports Internet Protocol Version 6 (IPv6). The host must be
able to complete all critical functions utilizing only IPv6 on the network (no tunneling).

Example:

None.

Part 2: Traceability

Page 337

G1587

Statement:

Prepare an Internet Protocol Version 6 (IPv6) transition plan for the Node.

Rationale:

The transition from Internet Protocol Version 4 (IPv4) to Internet Protocol Version 6 (IPv6) is non-trivial and
requires a great deal of coordination and effort on the part of everyone involved. The transition plan helps to
minimize the potential disastrous side effects of the transition.

Referenced By:

IPv4 to IPv6 Transition
Design Tenet: IPv6

Evaluation Criteria:

1) Test: [G1587.1]

Is there an Internet Protocol Version 6 (IPv6) transition plan for the Node?

Procedure:

Look for an Internet Protocol Version 6 (IPv6) transition plan document.

Example:

None.

Part 2: Traceability

Page 338

G1588

Statement:

Coordinate an Internet Protocol Version 6 (IPv6) transition plan for a Node with the Components that comprise
the Node.

Rationale:

The effects of the transition from Internet Protocol Version 4 (IPv4) to Internet Protocol Version 6 (IPv6) is
isolated in the Node infrastructure but can have impacts on all the Components that comprise the Node. The
transition Plan should cover a "window" that allows all the Components to operate in either IPv4 or IPv6 (i.e., Dual
Stack Mode) to make the transition.

Referenced By:

IPv4 to IPv6 Transition
Design Tenet: IPv6

Evaluation Criteria:

1) Test: [G1588.1]

Does the plan allow for a Dual Stack environment at least during some transition period?

Procedure:

Look for a part of the transition plan that addresses Dual Stack mode of operation.

Example:

None.

Part 2: Traceability

Page 339

G1589

Statement:

Address issues in the appropriate governing IPv6 transition plan as part of the Internet Protocol Version 6 (IPv6)
Transition Plan for a Node.

Rationale:

DoD has mandated that each service create an IPv6 transformation office to manage the transition to IPv6. Node
transition plans must be aligned and in conformance with the appropriate governing office's plans or criteria.

Referenced By:

IPv4 to IPv6 Transition
Design Tenet: IPv6

Evaluation Criteria:

1) Test: [G1589.1]

Does the Node's IPv6 Transition Plan have a section that addresses specific criteria established by the appropriate
governing IPv6 transition office or plan?

Procedure:

Review the IPv6 plan for a section or specific criteria that address the appropriate items from the appropriate
governing plan or is approved by the appropriate governing office.

Example:

The Air Force IPv6 Transition Office requires each program to develop a plan with approval by the transition office (in
lieu of aligning with a central plan). To check an Air Force Node's alignment, look to see that the Node's IPv6 transition
plan is approved by the appropriate authority.

Part 2: Traceability

Page 340

G1590

Statement:

Include transition of all the impacted elements of the network as part of the Internet Protocol Version 6 (IPv6)
Transition Plan for a Node.

Rationale:

Internet Protocol Version 6 (IPv6) transition has an impact on many transport infrastructure Components. The
Node's IPv6 Transition Plan should include transition of all impacted network elements including DNS, routing,
security, and dynamic address assignment. The DoD IPv6 Network Engineer's Guidebook (Draft) and the DoD
IPv6 Application Engineer's Guidebook (Draft) provide guidance for transition of impacted Components.

Referenced By:

IPv4 to IPv6 Transition
Design Tenet: IPv6

Evaluation Criteria:

1) Test: [G1590.1]

Does the Internet Protocol Version 6 (IPv6) Transition Plan address the impact of the transition to IPv6 on the Domain
Name Service (DNS)?

Procedure:

Review the plan and look for a section dedicated to the Domain Name Service (DNS). At a minimum, it should indicate
that there is no impact.

Example:

None.

2) Test: [G1590.2]

Does the Internet Protocol Version 6 (IPv6) Transition Plan address the impact of the transition to IPv6 on routing?

Procedure:

Review the plan and look for a section dedicated to routing. At a minimum, it should indicate that there is no impact.

Example:

None.

3) Test: [G1590.3]

Does the Internet Protocol Version 6 (IPv6) Transition Plan address the impact of the transition to IPv6 on security?

Procedure:

Review the plan and look for a section dedicated to security. At a minimum, it should indicate that there is no impact.

Example:

None.

Part 2: Traceability

Page 341

4) Test: [G1590.4]

Does the Internet Protocol Version 6 (IPv6) Transition Plan address the impact of the transition to IPv6 on dynamic
address assignment?

Procedure:

Review the plan and look for a section dedicated to dynamic address assignment. At a minimum, it should indicate
that there is no impact.

Example:

None.

Part 2: Traceability

Page 342

G1591

Statement:

Prepare IPv6 Working Group products as part of the Internet Protocol Version 6 (IPv6) transition plan for a Node.

Rationale:

The Internet Protocol Version 6 (IPv6) Working Group has prescribed various products that can aid in the
planning for the transition from Internet Protocol Version 4 (IPv4) to IPv6. The Node's Transition Plan should
prepare these products to ensure that all the required activities are addressed.

Referenced By:

IPv4 to IPv6 Transition
Design Tenet: IPv6

Evaluation Criteria:

1) Test: [G1591.1]

Are the Internet Protocol Version 6 (IPv6) Working Group products in the Node's Transition Plan?

Procedure:

Look for the Working Group products in the Node's Transition Plan.

Example:

None.

Part 2: Traceability

Page 343

G1592

Statement:

Include interoperability testing in the plan as part of the Internet Protocol Version 6 (IPv6) transition plan for a
Node.

Rationale:

During the DoD transition period, a mixed IPv4/IPv6 environment will exist. Interoperability testing with both
standards will ensure the Node can fully function during the transition period with all other Nodes.

Referenced By:

Design Tenet: IPv6
IPv4 to IPv6 Transition

Evaluation Criteria:

1) Test: [G1592.1]

Does the Node's IPv6 transition plan address interoperability testing in a mixed environment?

Procedure:

Review the transition plan and verify that a test plan exists that specifically addresses interoperability testing in a
mixed IP environment.

Example:

None.

Part 2: Traceability

Page 344

G1595

Statement:

Implement Domain Name System (DNS) to manage hostname/address resolution within the Node.

Rationale:

Using Domain Name System (DNS) obviates the need for hard-coding Internet Protocol (IP) addresses within
the Node. In addition, DNS servers local to the Node allow for stable access of replicated entries from outside the
Node.

Referenced By:

Domain Name System (DNS)
Design Tenet: Packet Switched Infrastructure
Design Tenet: IPv6

Evaluation Criteria:

1) Test: [G1595.2]

Are there any hard coded Internet Protocol (IP) addresses within the source code or data files?

Procedure:

Look at the source code, properties files and descriptor files for the occurrence of Internet Protocol Version 4 (IPv4) or
Internet Protocol Version 6 (IPv6) Internet Protocol (IP) addresses.

Example:

None.

2) Test: [G1595.1]

Is there a Domain Name System (DNS) server in the Node acquisition list?

Procedure:

Look for a Domain Name System (DNS) server within the parts list for the Node.

Example:

None.

Part 2: Traceability

Page 345

G1596

Statement:

Use Domain Name System (DNS) Mail eXchange (MX) Record capabilities to configure electronic mail delivery
to the Node.

Rationale:

Utilizing the Domain Name System (DNS) Mail eXchange (MX) record capability will avoid the need to hard
code delivery routes and instructions within a Node's email system and buffers it from physical changes made to
email delivery points and routes outside of the Node. The DNS MX record is a standard and commonly accepted
mechanism for resolving email delivery routes and addresses across the Internet.
Internet Engineering Task Force (IETF) Request fo Comments (RFC) 2821 of April 2001 established rules for
MX record usage.

Referenced By:

Domain Name System (DNS)
Design Tenet: Packet Switched Infrastructure

Evaluation Criteria:

1) Test: [G1596.1]

Are there Mail eXchange (MX) Records defined within the Domain Name System (DNS)?

Procedure:

Look at the Domain Name System (DNS) records for Mail eXchange (MX) Records.

Example:

None.

http://www.ietf.org/rfc/rfc2821.txt

Part 2: Traceability

Page 346

G1598

Statement:

Allow dynamic Domain Name System (DNS) updates to the Node's internal DNS service by local Dynamic Host
Configuration Protocol (DHCP) server(s).

Rationale:

There are two basic methods for assigning of Internet Protocol (IP) addresses within a network: static and
dynamic. Static addresses are assigned to a particular system and never change. Dynamic Internet Protocol (IP)
addresses are issued for a variable length of time: the DCHP lease time. Dynamic Host Configuration Protocol
(DHCP) is the principle mechanism used to assign and manage dynamic IP addresses. If the DHCP servers are
allowed to update the Domain Name System (DNS), then the number of static addresses required by the system
can be drastically reduced with preference being given to requesting services by domain name rather than IP
address.

Referenced By:

Design Tenet: Packet Switched Infrastructure
Domain Name System (DNS)

Evaluation Criteria:

1) Test: [G1598.1]

Does the Domain Name System (DNS) server in the Node acquisition list support updates from Dynamic Host
Configuration Protocol (DHCP) Servers?

Procedure:

Review the Domain Name System (DNS) server specification to confirm that it supports such operations.

Example:

None.

Part 2: Traceability

Page 347

G1599

Statement:

Support both Internet Protocol Version 4 (IPv4) and Internet Protocol Version 6 (IPv6) simultaneously in the
Node's Domain Name System (DNS) service.

Rationale:

During the transition period in the DoD community (FY06-FY15) networks, services and applications will be in a
mixed environment. The Domain Name System (DNS) returns different address records depending on the Internet
Protocol (IP) environment: A records for IPv4 or AAAA records for IPv6. A DNS must be able to support both.

Referenced By:

IPv4 to IPv6 Transition
Domain Name System (DNS)
Design Tenet: IPv6

Evaluation Criteria:

1) Test: [G1599.1]

Does the Domain Name System (DNS) server support both A and AAAA records?

Procedure:

Review the Domain Name System (DNS) specification to confirm that it supports both A and AAAA records.

Example:

None.

Part 2: Traceability

Page 348

G1600

Statement:

Obtain from DISA any and all Internet Protocol Version 6 (IPv6) addresses used on DoD systems in the Node.

Rationale:

All the Internet Protocol (IP) addresses in use on a DoD network must be from an appropriate clearing house in
order to maintain control and accountability on the network. DISA is the clearing house for all DoD addresses.

Referenced By:

IPv4 to IPv6 Transition
Domain Name System (DNS)
Design Tenet: IPv6

Evaluation Criteria:

1) Test: [G1600.1]

Is there a proper entry in the Military Network Information Center (MILNIC) for every IP address assigned to the
system?

Procedure:

Verify an adequate address allocation has been made inMilitary Network Information Center (MILNIC) for the system.

Example:

None.

Part 2: Traceability

Page 349

G1601

Statement:

Use configurable routers to provide dynamic Internet Protocol (IP) address management using Dynamic Host
Configuration Protocol (DHCP).

Rationale:

There are two basic methods for assigning of Internet Protocol (IP) addresses within a network: static and
dynamic. Static addresses are assigned to a particular system and never change. Dynamic IP addresses are
issued for a variable length of time: the DCHP lease time. Dynamic Host Configuration Protocol (DHCP) is the
principle mechanism used to assign and manage dynamic IP addresses.

Referenced By:

Design Tenet: Inter-Network Connectivity
Routers
Design Tenet: Network Connectivity
Multicast
Design Tenet: Packet Switched Infrastructure

Evaluation Criteria:

1) Test: [G1601.1]

Does the router in the Node acquisition list support Dynamic Host Configuration Protocol (DHCP)?

Procedure:

Review the router specification to confirm that it supports such operations.

Example:

None.

Part 2: Traceability

Page 350

G1602

Statement:

Use configurable routers to provide static Internet Protocol (IP) addresses.

Rationale:

Some network Components such as the routers themselves and other security related services must reside on
static Internet Protocol (IP) addresses. Serious comprises in the network can arise if these services are allowed
to be dynamic.

Referenced By:

Design Tenet: Inter-Network Connectivity
Routers
Design Tenet: Network Connectivity
Design Tenet: Packet Switched Infrastructure

Evaluation Criteria:

1) Test: [G1602.1]

Does the router in the Node acquisition list support static Internet Protocol (IP) addressing?

Procedure:

Review the router specification to confirm that it supports such operations.

Example:

None.

Part 2: Traceability

Page 351

G1604

Statement:

Use configurable routers to provide time synchronization services using Network Time Protocol (NTP).

Rationale:

Over time, most computer clocks drift. Network Time Protocol (NTP) is one way to ensure that a computer clock
stays accurate. Unfortunately, in order to stay synchronized, a network connection needs to be maintained. In
environments that have limited bandwidth or poor quality of service (QoS) this can become a major issue.

Referenced By:

Time Services
Design Tenet: Inter-Network Connectivity
Design Tenet: Packet Switched Infrastructure
Routers
Design Tenet: Network Connectivity

Evaluation Criteria:

1) Test: [G1604.1]

Does the router in the Node acquisition list support NTP Service?

Procedure:

Review the routers specification to confirm that it supports such operations.

Example:

None.

Part 2: Traceability

Page 352

G1605

Statement:

Use configurable routers to provide multicast addressing.

Rationale:

Multicast addresses identify interfaces that allow a packet to be sent to all the addresses registered for the
multicast service. This allows network to easily support applications such as collaboration, audio and video.

Referenced By:

Routers
Design Tenet: Network Connectivity
Design Tenet: Packet Switched Infrastructure
Design Tenet: Inter-Network Connectivity

Evaluation Criteria:

1) Test: [G1605.1]

Does the router in the Node acquisition list support NTP Service?

Procedure:

Review the router specification to confirm that it supports such operations.

Example:

None.

Part 2: Traceability

Page 353

G1606

Statement:

Manage routers remotely from within the Node.

Rationale:

Router manufactures routinely provide tools to enable remote configuration and management of the router. These
tools are can speed and centralize the administration of the Nodes routers.

Referenced By:

Design Tenet: Inter-Network Connectivity
Routers
Design Tenet: Network Connectivity
Design Tenet: Decentralized Operations and Management
Design Tenet: Packet Switched Infrastructure

Evaluation Criteria:

1) Test: [G1606.1]

Does the router in the Node acquisition list support remote management?

Procedure:

Review the router specification to confirm that it supports such operations.

Example:

None.

Part 2: Traceability

Page 354

G1607

Statement:

Configure routers according to National Security Agency (NSA) Router Security Configuration guidance.

Rationale:

The Router Security Configuration Guide provides technical guidance intended to help network administrators and
security officers improve the security of their networks. It contains principles and guidance for secure configuration
of Internet Protocol (IP) routers, with detailed instructions for Cisco System routers. The information presented
can be used to control access, help resist attacks, shield other network Components, and help protect the
integrity and confidentiality of network traffic.

Referenced By:

Design Tenet: Packet Switched Infrastructure
Design Tenet: Inter-Network Connectivity
Design Tenet: Concurrent Transport of Information Flows
Routers
Design Tenet: Network Connectivity
Design Tenet: Encryption and HAIPE

Evaluation Criteria:

1) Test: [G1607.1]

Is the Router Security Checklist complete and up to date?

Procedure:

Check for the occurrence of the checklist; there should be a copy for every time the checklist has been completed.
The checklist should indicate the date, time and results of the checklist with recommendation actions.

Example:

Router Security Checklist
This security checklist is designed to help review router security configuration and remind a user of any security areas
that might be missed.

• Router security policy written, approved, distributed.

• Router IOS version checked and up to date.

• Router configuration kept off-line, backed up, access to it limited.

• Router configuration is well-documented, commented.

• Router users and passwords configured and maintained.

• Password encryption in use, enable secret in use.

• Enable secret difficult to guess, knowledge of it strictly limited. (if not, change the enable secret immediately)

• Access restrictions imposed on Console, Aux, VTYs.

http://www.nsa.gov/snac/routers/C4-040R-02.pdf

Part 2: Traceability

Page 355

• Unneeded network servers and facilities disabled.

• Necessary network services configured correctly (e.g. DNS)

• Unused interfaces and VTYs shut down or disabled.

• Risky interface services disabled.

• Port and protocol needs of the network identified and checked.

• Access lists limit traffic to identified ports and protocols.

• Access lists block reserved and inappropriate addresses.

• Static routes configured where necessary.

• Routing protocols configured to use integrity mechanisms.

• Logging enabled and log recipient hosts identified and configured.

• Router's time of day set accurately, maintained with NTP.

• Logging set to include consistent time information.

• Logs checked, reviewed, archived in accordance with local policy.

• SNMP disabled or enabled with good community strings and ACLs.

Part 2: Traceability

Page 356

G1608

Statement:

Obtain the reference time for the Node time service from a globally synchronized time source.

Rationale:

Currently Network Time Service is not a ubiquitous service across the Global Information Grid (GIG). Security
directives prevent IP-based time synchronization across firewall boundaries (e.g., AFI 33-115, 16). An example of
a precise globally synchronized time source is a Global Positioning System (GPS) system.

Referenced By:

Design Tenet: Packet Switched Infrastructure
Time Services
Design Tenet: Inter-Network Connectivity
Design Tenet: Network Connectivity

Evaluation Criteria:

1) Test: [G1608.1]

Does the Node acquisition list include a precise globally synchronized time source such as Global Positioning
System (GPS) system?

Procedure:

Review the acquisition list for a precise globally synchronized time source such as a Global Positioning System
(GPS) system that can be used to accurately synchronize time.

Example:

None.

Part 2: Traceability

Page 357

G1609

Statement:

Arrange for a backup time source for the Node time service.

Rationale:

The most common type of backup time sources are crystal oscillators. The physical characteristics of the
piezoelectric quartz crystal produce electrical oscillations at an extremely accurate frequency. This frequency can
be used to mark time.

Referenced By:

Design Tenet: Network Connectivity
Design Tenet: Packet Switched Infrastructure
Design Tenet: Inter-Network Connectivity
Time Services

Evaluation Criteria:

1) Test: [G1609.1]

Does the Node acquisition list include a backup time system?

Procedure:

Review the acquisition list for a backup time system that can be used to synchronize time accurately. For example:
crystal oscillator, cesium or rubidium crystal oscillators. Crystal oscillator types and their abbreviations:

MCXO microcomputer-compensated crystal oscillator

OCVCXO oven-controlled voltage-controlled crystal oscillator

OCXO oven-controlled crystal oscillator

RbXO rubidium crystal oscillators (RbXO)

TCVCXO temperature-compensated-voltage controlled crystal
oscillator

TCXO temperature-compensated crystal oscillator

VCXO voltage-controlled crystal oscillator

Example:

None.

Part 2: Traceability

Page 358

G1610

Statement:

Configure the Dynamic Host Configuration Protocol (DHCP) services to assign multicast addresses.

Rationale:

When Dynamic Host Configuration Protocol (DHCP) services assign temporary Internet Protocol (IP)
addresses to clients, the clients may wish to participate in a multicast service. Therefore, the DHCP service must
support the assignment of multicast addresses as part of normal operations.

Referenced By:

Design Tenet: Network Connectivity
Multicast
Design Tenet: Packet Switched Infrastructure
Design Tenet: Inter-Network Connectivity

Evaluation Criteria:

1) Test: [G1610.1]

Does the router in the Node acquisition list support the assignment of multicast Internet Protocol (IP) addresses as
part of the normal Dynamic Host Configuration Protocol (DHCP) service?

Procedure:

Review the router specification to confirm that it supports such operations.

Example:

None.

Part 2: Traceability

Page 359

G1611

Statement:

Implement Internet Protocol (IP) gateways to interoperate with the Global Information Grid (GIG) until IP is
supported natively for Components that are not IP networked, such as aircraft data links (Link-16, SADL, etc.).

Rationale:

Component systems such as aircraft data links (Link-16, SADL, etc), should implement Transmission Control
Protocol/Internet Protocol (TCP/IP) gateways to interoperate with the Global Information Grid (GIG) until TCP/
IP is supported natively. This acts as an interim step that can be used to bridge the Internet Protocol (IP) divide.

Referenced By:

Design Tenet: Packet Switched Infrastructure
Integration of Non-IP Transports

Evaluation Criteria:

1) Test: [G1611.1]

Is there an Internet Protocol (IP) gateway in the system?

Procedure:

Identify Transmission Control Protocol/Internet Protocol (TCP/IP), User Datagram Protocol (UDP) or DDS code
that will be front-ended by a gateway.

Example:

None.

Part 2: Traceability

Page 360

G1612

Statement:

Implement Internet Protocol (IP) gateways as a service.

Rationale:

This does not mean that the service is a Web service or that it is limited to request/reply or other such usage
patterns. In fact, for high-frequency data, such as track reporting, a function of the service could be to set up an
out-of-band communication with a subscriber.

Referenced By:

Integration of Non-IP Transports
Design Tenet: Packet Switched Infrastructure

Evaluation Criteria:

1) Test: [G1612.1]

Is the gateway developed as a service that could be advertised in a registry?

Procedure:

Examine the gateway and determine if it is a service.

Example:

None.

Part 2: Traceability

Page 361

G1613

Statement:

Prepare a Node to host new Component services developed by other Nodes or by the enterprise itself.

Rationale:

A key aspect of an open systems approach to interoperability is modular design which is also a basic tenet of
good development practice. Modularity will support the dynamic redeployment of a Component into different
Nodes that requires the capabilities of the Component thus promoting broader interoperability between different
Nodes and Components. Where possible, Nodes should adopt standards based, platform independent frameworks
that facilitate pluggable deployment capabilities for Components so it can leverage the capabilities developed
elsewhere.

Referenced By:

Cross-Domain Interoperation
Design Tenet: Cross-Security-Domains Exchange
Web Client Platform

Evaluation Criteria:

1) Test: [G1613.1]

Does the Node support the elements of a modern component based framework such as Java Platform, Enterprise
Edition (Java EE), .NET or CORBA?

Procedure:

Look for the existence of Java Platform, Enterprise Edition (Java EE), .NET or CORBA frameworks with in the Node's
Component list or in its delivered software.

Example:

None.

Part 2: Traceability

Page 362

G1619

Statement:

Configure clients with a Common Access Card (CAC) reader.

Rationale:

DoD Instruction 8520.2, Public Key Infrastructure (PKI) and Public Key (PK) Enabling [R1206] , defines Common
Access Card (CAC) applicability and scope, in part, as follows:

This Instruction applies to:... 2.4. All DoD unclassified and classified information systems including
networks (e.g., Non-secure Internet Protocol (IP) Router Network , Secret Internet Protocol Router
Network, Web servers, and e-mail systems. Excluded are Sensitive Compartmented Information, and
information systems operated within the Department of Defense that fall under the authority of the Director
of Central Intelligence Directive (DCID) 6/3 (reference (h)).

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Common Access Card (CAC) Reader

Evaluation Criteria:

1) Test: [G1619.1]

Do all the client and server hardware come equipped with Common Access Card (CAC) Readers?

Procedure:

Review the hardware list and verify that all hardware comes with or has external CAC readers.

Example:

None.

Part 2: Traceability

Page 363

G1622

Statement:

Implement commercial off-the-shelf (COTS) software that protects against malicious code on each operating
system in the Node in accordance with the Desktop Application Security Technical Implementation Guide
(STIG).

Rationale:

The viral and worm assault on computing resources is major concern but is not strictly limited to DoD hardware
and operating systems. It has become a ubiquitous, wide spread problem that spreads destruction indiscriminately.
Since the problem is not strictly a DoD problem, commercial off-the-shelf (COTS) solutions are always being
updated to meet the current threats and are essential in protecting the assets. All hardware platforms should
employ virus and worm detection and removal software that is routinely run (especially on hardware the runs
Microsoft products).

Note: For purposes of this guidance, anti virus software includes related update and maintenance
capabilities typically available with such packages.

Referenced By:

Host Information Assurance
Other Design Tenets

Evaluation Criteria:

1) Test: [G1622.1]

Do all hardware devices listed in the Node acquisition list have COTS licensed virus and worm detection software?

Procedure:

Review the Node acquisition list and make sure there is one license for each piece of computer hardware.

Example:

None.

2) Test: [G1622.2]

Do all hardware devices listed in the Node acquisition list have COTS virus and worm detection software installed?

Procedure:

Review the prerequisites in the installation manual for virus and worm software.

Example:

None.

Part 2: Traceability

Page 364

G1623

Statement:

Implement personal firewall software on client or server hardware used for remote connectivity in accordance
with the Desktop Applications, Network and Enclave Security Technical Implementation Guides (STIGs).

Rationale:

All hardware that is plugged into a network is subject to attack by hackers. In addition to hardware firewalls,
every piece of hardware should be protected by a software firewall. These firewalls continuously monitor the
activity on the network port and detect possible hostile attacks. The user has the discretion to block hostile attacks
permanently or for a particular occasion. Since this problem is not restricted to DoD assets, Commercial off-the-
shelf (COTS) products are continuously being updated to meet the latest threats and are essential in meeting
these threats.

.

Referenced By:

Host Information Assurance
Other Design Tenets
Design Tenet: Decentralized Operations and Management
Design Tenet: Inter-Network Connectivity

Evaluation Criteria:

1) Test: [G1623.1]

Do all the hardware devices listed in the Node acquisition list have COTS software firewall licensed software?

Procedure:

Review the Node acquisition list and make sure there is one license for each piece of computer hardware.

Example:

None.

2) Test: [G1623.2]

Do all hardware devises listed in the Node acquisition list have COTS firewall software installed and is it enabled?

Procedure:

Review the prerequisites in the installation manual for firewall software.

Example:

None.

Part 2: Traceability

Page 365

G1624

Statement:

Install anti-spyware on all client and server hardware.

Rationale:

Spyware is a category of malicious software that can impact a system's operation in ways similar to virus and other
intrusions. Extending the principles of protection against viruses and other intrusions to spyware is an essential
activity to ensure stable system operation and security.

Referenced By:

Other Design Tenets
Host Information Assurance

Evaluation Criteria:

1) Test: [G1624.1]

Do all the hardware devices listed in the Node acquisition list have COTS software anti-spyware licensed software?

Procedure:

Review the Node acquisition list and make sure there is one license for each piece of computer hardware.

Example:

None.

2) Test: [G1624.2]

Do all hardware devices listed in the Node acquisition list have COTS anti-spyware software installed and is it
enabled?

Procedure:

Review the prerequisites in the installation manual for firewall software.

Example:

None.

Part 2: Traceability

Page 366

G1626

Statement:

Identify which Core Enterprise Services (CES) capabilities the Node Components require.

Rationale:

A Node needs to determine the set of Core Enterprise Services (CES) its Components will require in order
to ensure efficient prioritization of activities and resources to provide those services. NCES has defined a set
of common capabilities that help categorize types of services that may be required by a Node's Components.
Identification of the capabilties required by Components will help the Node determine which Services will need to
be implemented.

Referenced By:

Design Tenet: Open Architecture
CES Definitions and Status

Evaluation Criteria:

1) Test: [G1626.1]

Does the list of Components that comprise the Node indicate which CES capabilities are required to deploy each
Component?

Procedure:

Review the list of Components and verify that they have indicated which CES capabilities are required to support the
Component.

Example:

None.

Part 2: Traceability

Page 367

G1627

Statement:

Identify the priority of each Core Enterprise Services (CES) capability the Node Components require.

Rationale:

Identifying the priority of capabilities required by the Node's Components will assist the Node in allocation of
scarce resources towards the delivery of CES in the Node and minimize risks during deployment of Components
within the Node. Some capabilities are essential at getting a Component Deployed at a Node. Some are essential
for a particular Component increment. With this information the Node can construct a schedule that supports the
transition and evolution of the current federation of systems to the Global Information Grid (GIG) vision.

Referenced By:

Design Tenet: Open Architecture
CES Parallel Development
CES Definitions and Status

Evaluation Criteria:

1) Test: [G1627.1]

Does the list of Components that comprise the Node indicate the priority of the CES capabilities either relative to each
other or as of a date?

Procedure:

Review the list of Components and verify that they have indicated what the priority of the CES capabilities either
relative to each other or as of a date.

Example:

None.

Part 2: Traceability

Page 368

G1629

Statement:

Identify which Net-Centric Enterprise Services (NCES) capabilities the Node requires during deployment.

Rationale:

Relying on a high-bandwidth Transmission Control Protocol/Internet Protocol (TCP/IP) network connection is
not a reality for many deployed Nodes. These Nodes will have to develop many of their own CES capabilities for
use by their member Components while deployed. When the Node is not deployed, it may rely on proxies to the
Net-Centric Enterprise Services (NCES) services.

Referenced By:

CES Definitions and Status
Design Tenet: Joint Net-Centric Capabilities
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1629.1]

Does the Node have a list of Net-Centric Enterprise Services (NCES) capabilities that it depends on while
deployed?

Procedure:

Review the Node's documents for a list of Net-Centric Enterprise Services (NCES)capabilities required by the Node
while deployed.

Example:

None.

Part 2: Traceability

Page 369

G1630

Statement:

Comply with the applicable Global Information Grid (GIG) Key Interface Profiles (KIPs) for implemented Core
Enterprise Services (CES) in the Node.

Rationale:

When a CES is implemented locally, use the Global Information Grid (GIG) Key Interface Profiles (KIPs)
developed by DISA as the authoritative definition of the interfaces. This allows a Component that is hosted by one
Node to be hosted on another Node with a minimal impact.

Referenced By:

Design Tenet: Open Architecture
CES and Intermittent Availability
Key Interface Profile (KIP)

Evaluation Criteria:

1) Test: [G1630.1]

Do all CES used locally within the Node implement the applicable Global Information Grid (GIG) Key Interface
Profile (KIP)?

Procedure:

Verify that the interfaces for Core Enterprise Services (CES) implement Global Information Grid (GIG) Key Interface
Profiles (KIPs) for that CES.

Example:

None.

Part 2: Traceability

Page 370

G1631

Statement:

Expose Core Enterprise Services (CES) that comply with the applicable Global Information Grid (GIG) Key
Interface Profiles (KIPs) in all Node services proxies.

Rationale:

A Node may expose or control access to Global Information Grid (GIG) CES by using proxies. This allows a
Component that is hosted by one Node to be hosted on another Node with a minimal impact.

Referenced By:

Design Tenet: Open Architecture
Key Interface Profile (KIP)
CES and Intermittent Availability

Evaluation Criteria:

1) Test: [G1631.1]

Do all CES proxies locally defined within the Node expose CES using the applicable Global Information Grid (GIG)
Key Interface Profile (KIP)?

Procedure:

Verify that the interfaces for CES proxies follow Key Interface Profiles (KIPs) for that Global Information Grid (GIG)
KIP.

Example:

None.

Part 2: Traceability

Page 371

G1632

Statement:

Certify and accredit Nodes with all applicable DoD Information Assurance (IA) processes.

Rationale:

Nodes are part of the DoD Global Information Grid (GIG) and are consequently required to have DoD
Information Assurance (IA) certification and accreditation. Details for certification and accreditation are specified
in DoD Directive 8500.1, DoD Instruction 8500.2, DoD Directive 8580.1, and DoD Instruction 5200.40. Satisfaction
of these requirements results in IA compliance verification of the Node.

Referenced By:

Other Design Tenets
Information Assurance (IA)
Design Tenet: Net-Centric IA Posture and Continuity of Operations

Evaluation Criteria:

1) Test: [G1632.1]

Does the Node have DoD Information Assurance (IA) certification and accreditation?

Procedure:

Ask to examine the certification and accreditation reports.

Example:

None.

http://www.dtic.mil/whs/directives/corres/pdf2/d85001p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/i85002_020603/i85002p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/i85801_070904/i85801p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/i520040_123097/i520040p.pdf

Part 2: Traceability

Page 372

G1633

Statement:

Host only DoD Information Assurance (IA) certified and accredited Components.

Rationale:

Nodes that expose the external Node users to non-certified or non-accredited Components represent a risk to
the stability of the entire Node network and can introduce interoperability issues between Nodes (and related
Components).

Referenced By:

Information Assurance (IA)
Other Design Tenets
Design Tenet: Net-Centric IA Posture and Continuity of Operations

Evaluation Criteria:

1) Test: [G1633.1]

Does the Node have a plan to scan all Components on a routine basis?

Procedure:

Look for a plan and examine the results of the scan.

Example:

None.

Part 2: Traceability

Page 373

G1634

Statement:

Certify and accredit Components with all applicable DoD Information Assurance (IA) processes.

Rationale:

Each Component could theoretically be deployed on any Node. Therefore, it is the responsibility of the
Component to be DoD Information Assurance (IA) certified and accredited.

Referenced By:

Information Assurance (IA)
Design Tenet: Net-Centric IA Posture and Continuity of Operations
Other Design Tenets

Evaluation Criteria:

1) Test: [G1634.1]

Are all the Components DoD Information Assurance (IA) certified and accredited?

Procedure:

Examine the certification and accreditation reports.

Example:

None.

Part 2: Traceability

Page 374

G1635

Statement:

Make Nodes that will be part of the Global Information Grid (GIG) consistent with the GIG Integrated
Architecture.

Rationale:

The Global Information Grid (GIG) architecture describes the basic, high level architecture in which Nodes
reside. It is an integrated architecture consisting of the various DoDAF views. It provides a common lexicon and
defines a basic infrastructure for the performance of information exchanges with other GIG Nodes using the GIG
Enterprise Services (GES) and the Net-Centric Enterprise Services (NCES). The GIG Integrated Architecture is
available via the DoD Architecture Repository System (DARS), https://dars1.army.mil/ [user account and PKI
certificate required for access].

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Interoperability
Integrated Architectures

Evaluation Criteria:

1) Test: [G1635.1]

Are there DoDAF integrated architecture products defined for the Node that are consistent with the GIG Integrated
Architecture?

Procedure:

Look for the occurrence of Operational View (OV), Systems and ServicesView (SV), Technical Standards View
(TV) and All Views (AV).

Example:

None.

https://dars1.army.mil/

Part 2: Traceability

Page 375

G1636

Statement:

Comply with the Net-Centric Operations and Warfare Reference Model (NCOW RM).

Rationale:

The Net-Centric Operations and Warfare Reference Model (NCOW RM) is focused on achieving net-centricity.
Compliance with the NCOW RM translates to articulating how each Node approaches and implements net-centric
features. Compliance does not require separate documentation; rather, it requires that a Node address, within
existing architecture, analysis, and program architecture documentation, the issues identified by using the model,
and further, make explicit the path to net-centricity the program is taking.
Node compliance with the NCOW RM is demonstrated through inspection and analysis:

• Use of NCOW RM definitions and vocabulary;

• Incorporation of NCOW RM Operational View (OV) capabilities and services in the materiel solution;

• Incorporation of NCOW RM Technical View Information Technology (IT) and National Security Systems
(NSS) standards in the Technical View products developed for the materiel solution.

Compliance with the NCOW RM is a critical component of compliance with the Net-Ready Key Performance
Parameter (NR-KPP).

Referenced By:

Interoperability
Design Tenet: Service-Oriented Architecture (SOA)
Net-Centric Operations and Warfare Reference Model (NCOW RM)

Evaluation Criteria:

1) Test: [G1636.2]

Have the instructions in Chairman of the Joint Chiefs of Staff Instruction (CJCSI) 3170.01 been used to check the
Node for Net-Centric Operations and Warfare Reference Model (NCOW RM) compliance?

Procedure:

Check Node documentation.

Example:

2) Test: [G1636.3]

Have the instructions in Chairman of the Joint Chiefs of Staff Instruction (CJCSI) 6212.01 been used to check the
Node for Net-Centric Operations and Warfare Reference Model (NCOW RM) compliance?

Procedure:

Check Node documentation.

Example:

http://www.dtic.mil/cjcs_directives/cdata/unlimit/3170_01new.pdf
http://www.dtic.mil/cjcs_directives/cdata/unlimit/6212_01.pdf

Part 2: Traceability

Page 376

3) Test: [G1636.1]

Have the instructions in the Defense Acquisition University (DAU) Guidebook section 7.2.6 been used to check the
Node for NCOW RM compliance?

Procedure:

Check Node documentation.

Example:

http://akss.dau.mil/dag/Guidebook/IG_c7.2.6.asp

Part 2: Traceability

Page 377

G1637

Statement:

Make Node-implemented directory services comply with the directory services Global Information Grid (GIG)
Key Interface Profiles (KIPs).

Rationale:

When directory services are implemented locally, use the Global Information Grid (GIG) KIPs developed by
DISA as the authoritative definition of the interfaces. This allows a Component that is hosted by one Node to be
hosted on another node with a minimal impact.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Directory Services
Interoperability

Evaluation Criteria:

1) Test: [G1637.1]

Do all directory services used locally within the Node implement the applicable Global Information Grid (GIG) Key
Interface Profile (KIP)?

Procedure:

Verify that the interfaces for directory services implement Global Information Grid (GIG) Key Interface Profiles (KIPs)
for that directory services.

Example:

None.

Part 2: Traceability

Page 378

G1638

Statement:

Comply with the directory services Global Information Grid (GIG) Key Interface Profiles (KIPs) in Node
directory services proxies.

Rationale:

A Node may expose or control access to Global Information Grid (GIG) directory services by using proxies. This
allows a Component that is hosted by one Node to be hosted on another node with a minimal impact.

Referenced By:

Directory Services
Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Evaluation Criteria:

1) Test: [G1638.1]

Do all directory services proxies locally defined within the Node expose directory services using the applicable
Global Information Grid (GIG) Key Interface Profile (KIP)?

Procedure:

Verify that the interfaces for directory services proxies follow Key Interface Profiles (KIPs) for that Global Information
Grid (GIG) KIPs.

Example:

None.

Part 2: Traceability

Page 379

G1639

Statement:

Describe Components exposed by the Node as specified by the Service Definition Framework

Rationale:

The construction of registry entries is specified by the Service Definition Framework (SDF) documented in
Net-Centric Implementation Directives (NCIDs) S300. The common Service Definition Framework that serves
as the basis for adequately describing the offered Component service from both a provider's and consumer's
perspective. It describes the contract between the Component service provider and the Component service
consumer, and serves as the basis for a Service Level Agreement (SLA). The common service definition
framework consists of elements that include interface, service level, security and implementation information.

Referenced By:

Service Discovery
Design Tenet: Enterprise Service Management

Evaluation Criteria:

1) Test: [G1639.1]

Is there a Service Definition Framework (SDF) available for each of the Components' Services exposed through the
Node?

Procedure:

Look for a Service Definition Framework (SDF) for each Component service exposed through the Node.

Example:

None

Part 2: Traceability

Page 380

G1640

Statement:

Register Components exposed by the Node with the DISA-hosted registries.

Rationale:

The best way to for an exposed Node's Component service to be discovered is by being registered in the DISA
registry. The DISA registry implementation uses Universal Description, Discovery, Integration (UDDI).

Referenced By:

Interoperability
Service Discovery

Evaluation Criteria:

1) Test: [G1640.1]

Is the exposed Node's Component's service registered in the DISA Universal Description, Discovery, Integration
(UDDI) Registry?

Procedure:

Examine the DISA Universal Description, Discovery, Integration (UDDI) Registry and look for the exposed Node's
Component's service.

Example:

None.

Part 2: Traceability

Page 381

G1641

Statement:

Comply with the Service Discovery Global Information Grid (GIG) Key Interface Profiles (KIPs) in Node-
implemented Service Discovery (SD).

Rationale:

When a Service Discovery (SD) is implemented locally, the Global Information Grid (GIG) Kips developed by
DISA should be used as the authoritative definition of the interfaces. This allows a Component that is hosted by
one Node to be hosted on another node with a minimal impact.

Referenced By:

Service Discovery
Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Evaluation Criteria:

1) Test: [G1641.1]

Does the Service Discovery (SD) used locally within the Node implement the applicable Global Information Grid
(GIG) Key Interface Profile (KIP)?

Procedure:

Verify that the interfaces for Service Discovery (SD) implement Global Information Grid (GIG) Key Interface Profiles
(KIPs) for that Service Discovery.

Example:

None.

Part 2: Traceability

Page 382

G1642

Statement:

Comply with the Service Discovery Global Information Grid (GIG) Key Interface Profiles (KIPs) in Node
Service Discovery (SD) proxies.

Rationale:

A Node may expose or control access to Global Information Grid (GIG) Service Discovery (SD) by using
proxies. This allows a Component that is hosted by one Node to be hosted on another node with a minimal
impact.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Service Discovery
Interoperability

Evaluation Criteria:

1) Test: [G1642.1]

Do the Service Discovery (SD) proxies locally defined within the Node expose Service Discovery using the
applicable Global Information Grid (GIG) Key Interface Profile (KIP)?

Procedure:

Verify that the interfaces for Service Discovery (SD) proxies follow KIPs for that Global Information Grid (GIG) Key
Interface Profiles (KIPs).

Example:

None.

Part 2: Traceability

Page 383

G1643

Statement:

Comply with the Federated Search # Registration Web Service (RWS) Global Information Grid (GIG) Key
Interface Profiles (KIPs) in Node implemented Federated Search # Registration Web Service (RWS).

Rationale:

When a Federated Search # Registration Web Service (RWS) is implemented locally, use the Global
Information Grid (GIG) KIPs developed by DISA as the authoritative definition of the interfaces. This allows a
Component that is hosted by one Node to be hosted on another node with a minimal impact.

Referenced By:

Content Discovery Services

Evaluation Criteria:

1) Test: [G1643.1]

Does a Federated Search # Registration Web Service (RWS) used locally within the Node implement the applicable
Global Information Grid (GIG) Key Interface Profile (KIP)?

Procedure:

Verify that the interfaces for Federated Search # Registration Web Service (RWS) implement Global Information Grid
(GIG) Key Interface Profiles (KIPs) for that Federated Search # Registration Web Service (RWS).

Example:

None.

Part 2: Traceability

Page 384

G1644

Statement:

Comply with the Federated Search # Search Web Service (SWS) Global Information Grid (GIG) Key Interface
Profiles (KIPs) in Node implemented Federated Search # Search Web Service (SWS).

Rationale:

When a Federated Search # Search Web Service (SWS) is implemented locally, use the Global Information
Grid (GIG) Key Interface Profiles (KIPs) developed by DISA as the authoritative definition of the interfaces. This
allows a Component that is hosted by one Node to be hosted on another node with a minimal impact.

Referenced By:

Interoperability
Content Discovery Services

Evaluation Criteria:

1) Test: [G1644.1]

Does Federated Search # Search Web Service (SWS) used locally within the Node implement the applicable Global
Information Grid (GIG) Key Interface Profile (KIP)?

Procedure:

Verify that the interfaces for Federated Search # Search Web Service (SWS) implement Global Information Grid (GIG)
Key Interface Profiles (KIPs) for that Federated Search # Search Web Service (SWS).

Example:

None.

Part 2: Traceability

Page 385

G1645

Statement:

Implement a local Content Discovery Service (CDS).

Rationale:

The node should implement the Content Discovery Service (CDS) as part of the node infrastructure to be shared
among the Components hosted at the Node. A CDS will allow other Nodes and Components to find content within
the node. The systems within the Node normally provide the content.

Note: If a Node is frequently disconnected, has intermittent connectivity, or is otherwise isolated, then
hosting a local CDS might not be a practical solution for external content discovery and more effective means
for internal discovery may be applicable.

Referenced By:

Interoperability
Content Discovery Services

Evaluation Criteria:

1) Test: [G1645.1]

Does the Node implement the Content Discovery Service (CDS) Global Information Grid (GIG) Key Interface
Profile (KIP)?

Procedure:

Look for an implementation at the Node of the Content Discovery Service (CDS) Global Information Grid (GIG) Key
Interface Profiles (KIPs).

Example:

None.

Part 2: Traceability

Page 386

G1646

Statement:

Comply with the directory services Global Information Grid (GIG) Key Interface Profiles (KIPs) in Node
Federated Search Services proxies.

Rationale:

A Node may expose or control access to Global Information Grid (GIG) Federated Search Services by using
proxies. This allows a Component that is hosted by one Node to be hosted on another node with a minimal
impact.

Referenced By:

Interoperability
Content Discovery Services

Evaluation Criteria:

1) Test: [G1646.1]

Do all Federated Search Services proxies locally defined within the Node expose Federated Search Services using
the applicable Global Information Grid KIP?

Procedure:

Verify that the interfaces for Federated Search Services proxies follow KIPs for that Global Information Grid (GIG) Key
Interface Profiles (KIPs).

Example:

None.

Part 2: Traceability

Page 387

G1647

Statement:

Provide access to the Federated Search Services.

Rationale:

Content Discovery Service can search across a set of Content Discovery Services and yield an integrated result.
The current approach to providing this service is to harness an existing capability termed Federated Search
developed under the Horizontal Fusion (HF) program. The capability utilizes the DoD Discovery Metadata
Specification (DDMS).

Referenced By:

Content Discovery Services
Design Tenet: Provide Data Management

Evaluation Criteria:

1) Test: [G1647.1]

Does the Node provide access to the Federated Search Service Global Information Grid (GIG) Key Interface
Profile (KIP)?

Procedure:

Look for a proxy or an implementation that provides access to the Federated Search

Example:

None.

Part 2: Traceability

Page 388

G1652

Statement:

Use DoD PKI X.509 certificates for servers.

Rationale:

Using a DoD PKI X.509 server certificate identifies the server as being trusted by the DoD and guarantees that
the server's identity is legitimate.

Referenced By:

Identity Management
Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [G1652.1]

Is the server certificate a valid DoD PKI X.509 certificate that is non-expired?

Procedure:

Open the server certificate and check that it is trusted by a trusted DoD root certificate.

Example:

Part 2: Traceability

Page 389

G1662

Statement:

Follow the guidance provided in the Security Technical Implementation Guide (STIG) for Domain Name
System (DNS) implementations.

Rationale:

As a fundamental common service on IP-based networks, DNS is often a focal point for network attackers.
Following the STIG ensures alignment with DoD identified security practices and configurations. The STIG
addresses implementation options such as the choice of basic DNS server types (primary, secondary, caching-
only), use of a split-DNS design, location of servers in the network and relationship to other network components,
secure administration, security of zone transfers, and initial configuration.

Referenced By:

Domain Name System (DNS)
Other Design Tenets

Evaluation Criteria:

1) Test: [G1662.1]

Do the Node's DNS services follow the STIG for DNS implementations?

Procedure:

Compare Node DNS services configuration with those recommended by the STIG.

Example:

None.

Part 2: Traceability

Page 390

G1667

Statement:

Implement Virtual Private Networks (VPNs) in accordance with the guidance provided in the Network Security
Technical Implementation Guide (STIG).

Rationale:

Virtual Private Networks provide a means for Node access to users outside the security enclave. To Network
STIG provides recommendations on how to configure VPNs for secure access.

Referenced By:

Virtual Private Networks (VPN)
Other Design Tenets

Evaluation Criteria:

1) Test: [G1667.1]

Does the configuration of the Node's VPN servers follow the recommendations of the Network STIG?

Procedure:

Check VPN server configuration against recommended configurations in the Network STIG.

Example:

None.

Part 2: Traceability

Page 391

G1713

Statement:

Use an Operating Environment (OE) for all SCA applications that includes middleware that, at a minimum,
provides the services and capabilities specified by Minimum CORBA Specification version 1.0.

Rationale:

Using a CORBA provider that adheres to the minimum CORBA v1.0, specification improves the interoperability
between SCA Operating Environments.

Referenced By:

Software Communication Architecture
Design Tenet: RF Acquisition
Interoperability
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture
Composeability
Reusability
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [G1713.1]

Does the OE contain middleware that provides the services and capabilities of minimum CORBA?

Procedure:

Check for minimum CORBA compliance in the CORBA provider's documentation.

Example:

Part 2: Traceability

Page 392

G1714

Statement:

Develop Software Communications Architecture (SCA) applications to use only Operating Environment
functionality defined by the SCA Application Environment Profile.

Rationale:

The SCA Application Environment Profile (AEP) is a subset of the Portable Operating System Interface (POSIX)
specification. Functionality that is not part of the AEP is not guaranteed to be part of the operating environment.
Applications that rely on functionality that is not part of the AEP will require changes to deploy or port to other SCA
platforms.

Referenced By:

Software Communication Architecture
Design Tenet: Open Architecture
Reusability
Design Tenet: Service-Oriented Architecture (SOA)
Composeability
Design Tenet: Accommodate Heterogeneity
Design Tenet: RF Acquisition
Interoperability

Evaluation Criteria:

1) Test: [G1714.1]

Does the SCA application use Operating Environment functions not defined by a Application Environment Profile?

Procedure:

Check to see that all Operating Environment calls in the SCA application are listed in an Application Environment
Profile.

Example:

Part 2: Traceability

Page 393

G1717

Statement:

Use constants instead of hard-coded numbers for characteristics that may change throughout the lifetime of the
model.

Rationale:

Constants increase the usefulness and lifetime of a design because the model can adapt to a variety of
environments by postponing or modifying those parameters late in the design cycle. This makes the code more
readable, maintainable and reusable.

Note: This practice has been adapted from Cohen, section 1.6.1.1.3.

Referenced By:

VHDL Coding and Design
Maintainability
Reusability

Evaluation Criteria:

1) Test: [G1717.1]

Are there any characteristics that are susceptible to modification that are directly given a value?

Procedure:

Parse the code and look for hard-coded characteristics that are susceptible to change and consider replacing them
with a constant.

Example:

None

Part 2: Traceability

Page 394

G1718

Statement:

Design circuits to be synchronous.

Rationale:

The preferred method of engineering today's digital ICs is based on a synchronous design. The main advantages
of this are simplicity and reliability. Creating synchronous pieces of code increases interoperability and reusability
when they are used with other synchronous modules.

Referenced By:

VHDL Synchronous Design
Maintainability
Reusability

Evaluation Criteria:

1) Test: [G1718.1]

Are all flip-flops clocked by the same, common clock signal?

Procedure:

Check to make sure a single external clock signal triggers the design to go from a well defined and stable state to the
next one. On the active edge of the clock, all input and output signals and all internal nodes are stable in either the
high or low state. Between two consecutive edges of the clock, the signals and nodes are allowed to change and may
take any intermediate state.

Example:

None

Part 2: Traceability

Page 395

G1719

Statement:

Automate testbench error checking in VHDL development.

Rationale:

Manual verification is subject to human error and is time consuming. In addition, automation promotes increased
maintainability, because it enables fast and reliable verification of a model when modifications are made.

Note: This practice has been adapted from Cohen, section 11.1.1.

Referenced By:

VHDL Testbench
Composeability
Maintainability
Reusability

Evaluation Criteria:

1) Test: [G1719.1]

Does the testbench automatically report success or failure for each sub-test that it runs through?

Procedure:

Run the testbench to see if it automatically reports successes or failures for each sub-test.

Example:

None

Part 2: Traceability

Page 396

G1724

Statement:

Develop XML documents to be well formed.

Rationale:

By W3C definition, XML documents must be well formed. However, documents that contain XML tags that are not
well formed has no name and is often still referred to as an XML Document in common vernacular. Therefore, this
guidance statements helps to clarify the need for well-formed documents. Well formed XML documents are those
documents which have a proper XML syntax. This is essential if the XML is to be parsed using common, readily
available open source and commercial XML parsers.

Referenced By:

Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable
Interoperability
XML Syntax
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1724.1]

Can the XML Document be parsed using a common, readily available XML Parser?

Procedure:

Open the XML document in a browser such as Mozilla Firefox or Microsoft Internet Explorer or use the XML Validator
available from the W3 Schools at: http://www.w3schools.com/xml/xml_validator.asp

Example:

None

Part 2: Traceability

Page 397

G1725

Statement:

Develop XML documents to be valid XML.

Rationale:

The content of a valid XML document conforms to a specific set of user-defined content rules contained in
XML schemas. XML schemas describe data values correctness using predefined datatypes as base types and
assigning values to the datatype specific attributes of those datatypes. For example, if an element in a document
is required to contain text that can be interpreted as being an integer numeric value, and instead contains:
alphanumeric text such as "hello"; is empty; or has other elements in its content, then the document is considered
not valid.

Referenced By:

Design Tenet: Make Data Understandable
Defining XML Schemas
XML Instance Documents
XML Validation
Interoperability
Design Tenet: Open Architecture
Design Tenet: Make Data Interoperable

Evaluation Criteria:

1) Test: [G1725.1]

Does the document validation tool indicate that the XML document is valid?

Procedure:

Use a validating parser and verify that the document is valid.

Example:

None.

Part 2: Traceability

Page 398

G1726

Statement:

Define XML Schemas using XML Schema Definition (XSD).

Rationale:

While it is possible to use Document Type Definitions (DTD) to convey much of the same information as the
XML Schema Definition (XSD), XSDs have a several distinct advantages which are very useful in terms of
interoperability. For example, DTDs do not capture domain or type range information very well (i.e. elevation in
meters is from 0 to 12,000).

XML Schemas are a tremendous advancement over DTDs. Here are some of the reasons to use XSDs versus
DTDs as delineated by Roger Costello in an XML tutorial (see the XML Schema Tutorial available at http://
www.xfront.com):

• Enhanced datatypes support:

• 44+ in XSDs versus 10 in DTDs

• Support for user defined datatypes. For example, a user can define a new type based on the string
type. Elements declared of this type must follow this specific pattern ddd-dddd, where d represents a
numeric digit.

• Written using the same syntax as other XML instance documents. This means there is less to remember and
more consistency with the same rules applying to all XML instance documents.
XSDs support a limited Object-oriented (OO) paradigm. For example, new types can be derived from
previously defined types with more or more stringent restrictions.

• Supports a kind of polymorphism where elements can be interchanged with parent or child elements. For
example, a "Book" element can be substituted for the "Publication" element.

• Supports the definition of elements that are unordered collections or sets of other elements.

• Support for the identification of elements as part of a unique key.

• Support for elements that have the same name but different content

• Support for elements that have a null (i.e., nil) value.

Referenced By:

Design Tenet: Provide Data Management
Defining XML Schemas
Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable
Interoperability
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1726.1]

Are XML schemas defined using XML Schema Definitions?

http://www.xfront.com
http://www.xfront.com

Part 2: Traceability

Page 399

Procedure:

Verify that XML schemas are defined using W3C XML Schema Definitions rather than Document Type Definitions.

Example:

None.

Part 2: Traceability

Page 400

G1727

Statement:

Provide names for XML type definitions.

Rationale:

By naming type definitions in a schema, the type definitions can be reused in any number of other definitions. For
example:

<xsd:complexType name="PointOfContact">
 <xsd:sequence>
 <xsd:element name="LastName" type="xsd:string"/>
 <xsd:element name="FirstName" type="xsd:string"/>
 <xsd:element name="MiddleName" type="xsd:string"/>
 <xsd:element name="NickName" type="xsd:string"/>
 <xsd:element name="PhoneNumber" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

Can be reused anywhere a Point-Of-Contact needs to used. For Example:

<xsd:complexType name="Project">
 <xsd:sequence>
 <xsd:element name="ProjectName" type="xsd:string"/>
 <xsd:element name="ProgramManager" type="PointOfContact"/>
 <xsd:element name="HardwareManager" type="PointOfContact"/>
 <xsd:element name="SoftwareManager" type="PointOfContact"/>
 <xsd:element name="ConfigurationManager" type="PointOfContact"/>
 </xsd:sequence>
</xsd:complexType>

Referenced By:

Maintainability
Defining XML Types
Interoperability
Versioning XML Schemas
Design Tenet: Make Data Understandable
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [G1727.1]

Do all complexTypes have names associated with them?

Procedure:

Examine all the complexType elements in the schema and verify that they have a name associated with them.

Example:

<xsd:complexType name="PointOfContact">
 ...

Part 2: Traceability

Page 401

</xsd:complexType>

2) Test: [G1727.2]

Do all simpleTypes have names associated with them?

Procedure:

Examine all the simpleType elements in the schema and verify that they have a name associated with them.

Example:

<xsd:simpleType name="PointOfContact">
 ...
</xsd:simpleType>

Part 2: Traceability

Page 402

G1728

Statement:

Define types for all XML elements.

Rationale:

There are two ways to associate the type-like information within an XML Schema. The first way is define an XML
element as a global element of the schema element and the second is to define a complex or simple type. The
first method violates G1727 and it does not support the clean separation of the definition of types from the use of
the types.

By separating the definition of the types from the definition of the elements within structures, the types can be
reused and are loosely coupled from any particular instance of the domain. The definitions of the type information
can be maintained by a community that wishes to share the definition rather than any particular implementation or
instance.

Referenced By:

Design Tenet: Make Data Understandable
Design Tenet: Open Architecture
Maintainability
Defining XML Types
Interoperability

Evaluation Criteria:

1) Test: [G1728.1]

Does the schema define any elements that are defined using references to other elements that are not part of a
substitutionGroup rather than types?

Procedure:

Look for the use of an element's ref attribute.

Example:

None.

Part 2: Traceability

Page 403

G1729

Statement:

Annotate XML type definitions.

Rationale:

Types in a schema represent a particular concept or aspect within a particular subject domain. Providing
documentation about the type within the schema itself helps prevent disconnects between the documentation and
the implementation as captured by the type definition.

Referenced By:

Design Tenet: Make Data Interoperable
Design Tenet: Make Data Understandable
Design Tenet: Provide Data Management
Design Tenet: Open Architecture
Maintainability
Defining XML Types

Evaluation Criteria:

1) Test: [G1729.1]

Do all the types defined within a schema have annotation that describes the nuances of type?

Procedure:

Look for an annotation for each simple type and complex type defined in the schema.

Example:

The complex type warranty includes an annotation that describes the purpose of the type and any caveats on when/
how to use it.

Part 2: Traceability

Page 404

G1730

Statement:

Follow an XML coding standard for defining schemas.

Rationale:

There are any number of coding standards that are defined for coding XML Schemas. Here are some areas
covered by the most popular:

• Elements and Types are Upper Camel Case (UCC) convention.

• Type names end with the word Type.

• Attributes start with a lowercase letter and then revert to Lower Camel Case (LCC) convention.

Referenced By:

Maintainability
Defining XML Schemas
Interoperability

Evaluation Criteria:

1) Test: [G1730.1]

Is there a consistent XML coding convention followed when schemas are defined?

Procedure:

Look for the occurrence of a XML coding standard and verify that the XML Schemas follow the standard.

Example:

None.

Part 2: Traceability

Page 405

G1731

Statement:

Only reference XML elements defined by a Type in substitution groups.

Rationale:

The 35mm, disk, and 3x5 components are simply declared as standalone XML elements which may be
substituted for the abstract RecordingMedium element.

Note: All of these RecordingMedium components have a type that is the same as, or derived from, the
RecordingMediumType.

Note: The abstract RecordingMedium is associated with a type, RecordingMediumType, rather than defining
the structure as part of the RecordingMedium element. This allows the definition of the RecordingMedium
structure (i.e. type) to evolve independently.

Referenced By:

Using XML Substitution Groups
Maintainability

Evaluation Criteria:

1) Test: [G1731.1]

Do substitutionGroup references point to an abstract element that has a structures defined by a type?

Procedure:

Ensure that all substitutionGroups point to an abstract element that has a structures defined by a type.

Example:

None.

Part 2: Traceability

Page 406

G1735

Statement:

Use the .xsd file extension for files that contain XML Schema definitions.

Rationale:

It is possible to use any name for a schema file extension. However, using any extension other than .xsd causes
confusion for humans as well as tools and utilities which rely on MIMEs often mapped to file extensions.

Referenced By:

Maintainability
XML Schema Files

Evaluation Criteria:

1) Test: [G1735.1]

Is the file extension that contains the schema definition .xsd?

Procedure:

Make sure that all XML documents that contain the xml schema tag have a file extension of .xsd.

Example:

None.

Part 2: Traceability

Page 407

G1736

Statement:

Separate document schema definition and document instance into separate documents.

Rationale:

Separating the definition of the schema from the document instance supports the modularity by separating the
definition of structure from the actual data. Each is allowed to evolve and change independently. In most cases,
the definition of the structure of the data should be relatively static compared with the number of documents that
are shared using that schema.

Document name: Camera.xsd

<xsd:schema
 targetNamespace="http://www.camera.org"
 elementFormDefault="qualified">
 <xsd:include schemaLocation="Nikon.xsd"/>
 <xsd:include schemaLocation="Olympus.xsd"/>
 <xsd:include schemaLocation="Pentax.xsd"/>
 <xsd:element name="Camera">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element
 name="Body"
 type="BodyType"/>
 <xsd:element
 name="Lens"
 type="LensType"/>
 <xsd:element
 name="ManualAdapter"
 type="ManualAdapterType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Document name: Camera.xml

<?xml version="1.0"?>
<Camera xmlns ="http://www.camera.org"

 xsi:schemaLocation=
 "http://www.camera.org
 Camera.xsd">
 <Body>
 <Description>
 Ergonomically designed casing for easy handling
 </ Description>
 </Body>
 <Lens>
 <Zoom>300mm</Zoom>
 <F-Stop>1.2</F-Stop>
 </Lens>
 <ManualAdapter>
 <speed>1/10,000 sec to 100 sec</speed>
 </ManualAdapter>
</Camera>

Referenced By:

XML Schema Files

Part 2: Traceability

Page 408

Maintainability
XML Instance Documents

Evaluation Criteria:

1) Test: [G1736.1]

Does the instance document have a <schema> tag?

Procedure:

Check the instance document and look for the use of the schema tag or the use of the XMLSchema namespace.

Example:

None.

Part 2: Traceability

Page 409

G1737

Statement:

Define a target namespace in schemas.

Rationale:

A target namespace describes the namespace for all the schema components defined by the schema. Without a
target namespace, all enclosed schema components are not associated with a namespace and if a namespace
prefix is not associated with the target namespace then all references to these schema components must be
unqualified. By not specifying a target namespace, ambiguity can arise when the schema is integrated with other
schemas. This can cause unnecessary naming collisions.

Note: http://www.library.org is the target namespace as well the lib namespace. See the third
targetNamespace line of the following code sample.

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://www.library.org"

 elementFormDefault="qualified">
 <xsd:include schemaLocation="BookCatalogue.xsd"/>
 <xsd:element name="Library">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="BookCatalogue">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="lib:Book"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Referenced By:

Using XML Namespaces
Design Tenet: Open Architecture
Interoperability
Design Tenet: Make Data Interoperable
Design Tenet: Make Data Understandable

Evaluation Criteria:

1) Test: [G1737.1]

Does the schema declare a target namespace?

Procedure:

Check the definition of all schemas and look for the assignment of the targetNamespace attribute.

Part 2: Traceability

Page 410

Example:

<xsd:schema

 targetNamespace="http://www.library.org"
 >
 . . .
</xsd:schema>

Part 2: Traceability

Page 411

G1738

Statement:

Define a qualified namespace for the target namespace.

Rationale:

To force all schema components defined by the schema to be qualified and to belong to a namespace, associate a
qualified namespace with the target namespace. This causes all components defined within the namespace to be
explicitly associated with a namespace. In other words, all components are always qualified.

Note: http://www.library.org is the target namespace as well the lib namespace. See the forth xmlns:lib line
of the following code sample.

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://www.library.org"

 elementFormDefault="qualified">
 <xsd:include schemaLocation="BookCatalogue.xsd"/>
 <xsd:element name="Library">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="BookCatalogue">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="lib:Book"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Referenced By:

Design Tenet: Open Architecture
Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable
Using XML Namespaces

Evaluation Criteria:

1) Test: [G1738.1]

Does the schema declare a qualified namespace for the target namespace?

Procedure:

Check the definition of all schemas and look for the assignment of the targetNamespace attribute and make sure there
is also a qualified namespace with the same name.

Part 2: Traceability

Page 412

Example:

In this example, the targetNamespace and the qualified namespace lib both have the same URI associated with them.

<xsd:schema

 targetNamespace="http://www.library.org"
 >
 . . .
</xsd:schema>

Part 2: Traceability

Page 413

G1740

Statement:

Append the suffix Type to XML type names.

Rationale:

Syntactically, XML allows names within a namespace to be reused as long as they do not define the same XML
Schema component. Therefore, a type and an element can both have the same name. A parser can easily
differentiate the components, but a human can not. In order to maintain maintainable "user-friendly" code,
differentiate types and elements by adding a type suffix for types.

Referenced By:

Defining XML Types
Maintainability

Evaluation Criteria:

1) Test: [G1740.1]

Do all the complex type names end in the type suffix?

Procedure:

Examine all the complex and simple type schema component definitions and verify that they end in the suffix type.

Example:

None.

Part 2: Traceability

Page 414

G1744

Statement:

Only reference abstract XML elements in substitution groups.

Rationale:

An abstract XML element can not have its type instantiated in an instance document. This means that the element
used as the basis for the substitution group and all the members of the substitution group must be derived from the
same type.

Referenced By:

Maintainability
Using XML Substitution Groups

Evaluation Criteria:

1) Test: [G1744.1]

Is the element used as the basis for the substitution group declared to be abstract and is it derived from a type?

Procedure:

Examine all the elements used as the basis for substitution groups and verify that they have been declared as
abstract.

Example:

<xsd:element name="RecordingMedium"
 abstract="true"
 type="RecordingMediumType"/>

Part 2: Traceability

Page 415

G1745

Statement:

Append the suffix Group to substitution group XML element names.

Rationale:

Syntactically, XML allows names within a namespace to be reused as long as they do not define the same
XML Schema component. Therefore, a type and an XML element can both have the same name. A parser can
easily differentiate the components, but a human can not. In order to maintain maintainable "user-friendly" code,
differentiate types and elements by adding a type suffix for types.

Referenced By:

Using XML Substitution Groups
Maintainability

Evaluation Criteria:

1) Test: [G1745.1]

Do all the complex type names end in the type suffix?

Procedure:

Examine all the complex and simple type schema component definitions and verify that they end in the suffix type.

Example:

None.

Part 2: Traceability

Page 416

G1746

Statement:

Develop XSLT stylesheets that are XSLT version agnostic.

Rationale:

There are never any guarantees as to the XSLT environment that a stylesheet will be used in. There are ways
of writing code as recommended by the W3C so that the stylesheets operate in XSL Version 1.0, 2.0 and future
releases. See W3C Extensibility and Fallback for XSL Transformations (XSLT) 2.0 for details.

Referenced By:

Design Tenet: Make Data Interoperable
XSLT
Design Tenet: Open Architecture
Interoperability

Evaluation Criteria:

1) Test: [G1746.2]

Does the stylesheet support 2.0 and future version portability as defined by the W3C Extensibility and Fallback for
XSL Transformations (XSLT) 2.0?

Procedure:

Look for the use of the use-when attribute in the xsl:value element.

Example:

<xsl:value-of
 select="pad($input, 10)"
 use-when="function-available('pad', 2)"
/>
<xsl:value-of
 select
 ="concat
 ($input,
 string-join
 (for $i in
 1 to
 10 - string-length($input)
 return ' ',
 ''
)
)"
 use-when="not(function-available('pad', 2)
"/>

2) Test: [G1746.1]

Does the stylesheet support version 1.0 and 2.0 portability as defined by the W3C Extensibility and Fallback for XSL
Transformations (XSLT) 2.0?

Part 2: Traceability

Page 417

Procedure:

Look for the use of the xsl:when and xsl:otherwise construct where the 2.0 functions are tested for availability in
the xsl:when branch and the 1.0 functionality is defined in the xsl:otherwise branch. For a comprehensive list of 2.0
functions see the W3Schools site on XPath, XQuery and XSLT Functions.

Example:

<out xsl:version="2.0">
 <xsl:choose>
 <xsl:when
 test="function-available('matches')">
 <xsl:value-of
 select="matches($input, '[a-z]*')"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of
 select=
 = "string-length
 (translate
 ($in,
 'abcdefghijklmnopqrstuvwxyz',
 ''
)
)
 = 0"
 />
 </xsl:otherwise>
 </xsl:choose>
</out>

Part 2: Traceability

Page 418

G1751

Statement:

Document all XSLT code.

Rationale:

XSLT is source code and should be internally documented including a file header that describes the purpose of the
transform and any restrictions or caveats associated with the transform.

Referenced By:

Maintainability
XSLT

Evaluation Criteria:

1) Test: [G1751.1]

Doe the XSLT have internal comments that document the transform?

Procedure:

Look inside the XSLT code and look for internal comments.

Example:

<xsl:for-each
 select="/transactions/transaction">
 <!--
 NOTE: Since dates are currently in
 ISO format they are in a sorted format
 and need no multi-level sorting
 -->
 <xsl:sort
 order="ascending"
 select="@startdate"/>
 <tr>
 <td>
 <xsl:value-of
 select="@startdate"/>
 </td>
 <td>
 <xsl:value-of
 select="@description"/>
 </td>
 <td>
 <!# Get year
 1234567890
 yyyy/mm/dd
 -->
 <xsl:value-of
 select="substring(@startdate, 1,4)"
 />
 </td>
 <td>
 <!# Get month
 1234567890
 yyyy/mm/dd
 -->

Part 2: Traceability

Page 419

 <xsl:value-of
 select="substring(@startdate, 6,2)"/>
 </td>
 <td>
 <!# Get day
 1234567890
 yyyy/mm/dd
 -->
 <xsl:value-of
 select="substring(@startdate, 9,2)"/>
 </td>
 </tr>
</xsl:for-each>

Part 2: Traceability

Page 420

G1753

Statement:

Declare the XML schema version with an XML attribute in the root XML element of the schema definition.

Rationale:

Formalizing the schema version number through the use of a required XML attribute helps automate the process
of validating the versions. This will reduce unexpected runtime errors that occur when assumptions are made
about the schema that may change over time. (See http://www.xfront.com/SchemaVersioning.html)

Referenced By:

Interoperability
Versioning XML Schemas
Design Tenet: Make Data Understandable
Design Tenet: Open Architecture
Design Tenet: Make Data Interoperable
Maintainability
Design Tenet: Provide Data Management

Evaluation Criteria:

1) Test: [G1753.1]

Does the schema definition define a required attribute that captures the version information?

Procedure:

Look at the schema definition file and look for the inclusion of a required attribute that captures the schema version
number. In the following example, the schemaVersion attribute is defined.

Example:

<xs:schema

 targetNamespace="http://www.exampleSchema"
 xmlns: xs ="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="1.3"
>
 <xs:element name="Example">
 <xs:complexType>
 . . .
 <xs:attribute
 name="schemaVersion"
 type="xs:decimal"
 use="required"
 />
 </xs:complexType>
 </xs:element>

http://www.xfront.com/SchemaVersioning.html

Part 2: Traceability

Page 421

G1754

Statement:

Give each new XML schema version a unique URL.

Rationale:

This allows the previous versions of the schema to be made available to support uninterrupted processing and
supports an orderly transition. It also allows the users of the schemas to compare and contrast the evolving
schema. http://www.xfront.com/SchemaVersioning.html

Referenced By:

Design Tenet: Open Architecture
Design Tenet: Make Data Interoperable
Maintainability
Versioning XML Schemas
Interoperability

Evaluation Criteria:

1) Test: [G1754.1]

Look for the multiple schemas that represent different versions with different URLs.

Procedure:

Look for XSDs that all define a particular schema but can be found at different locations. This can be done by
changing the path to the schema definition or that change the name of the file by adding the version number.

Example:

Changing the file path:

http://www.some.org/schema/1999/CoiSchema
http://www.some.org/schema/2003/CoiSchema
http://www.some.org/schema/2006/CoiSchema

Changing the file name:

http://www.some.org/schema/CoiSchema_1999
http://www.some.org/schema/CoiSchema_2003
http://www.some.org/schema/CoiSchema_2006

http://www.xfront.com/SchemaVersioning.html

Part 2: Traceability

Page 422

Part 2: Traceability

Page 423

G1756

Statement:

Isolate XPath expression statements into the configuration data.

Rationale:

XPath expression statements are dependent on the XML Schemas that are associated with the documents.
Consequently they need maintained independently from the applications that use them. Storing the XPath
expression statements externally as part of the configuration data ensures a clean separation of the maintenance
tasks and supports traceability using configuration management tools.

Referenced By:

XPath
Maintainability

Evaluation Criteria:

1) Test: [G1756.1]

Are there XPath expression statements embedded as string literals in the application source code?

Procedure:

Look for the occurrence of XPath expression statements or XML Element names defined as strings within the source
code.

Example:

void main (String args)
{ . . .
 String titleSearchExpression
 = "/library/books/book/title";
 . . .
} // End main

Part 2: Traceability

Page 424

G1759

Statement:

Use a style guide when developing Web portlets.

Rationale:

Portals contain portlets from different sources, and it is important for usability for the portal to have a common look
and feel across all portlets.

Referenced By:

Design Tenet: Make Data Interoperable
Interoperability
Design Tenet: Make Data Understandable
Reusability
Human Factor Considerations for Web-Based User Interfaces

Evaluation Criteria:

1) Test: [G1759.1]

Do all portlets comply with a style guide.

Procedure:

 Look at development documentation to determine if a style guide exist for web portlets and look for code reviews that
show it was used during development.

Example:

• Ahlstrom, V. & Allendoerfer, K. Web-Based Portal Computer-Human Interface Guidelines, 2004. Retrieved from:
http://hf.tc.faa.gov/products/bibliographic/tn0423.htm (July 2006).

• Web Portal Design Guide , Fernandes, K., Space and Nabal Warfare Systems Center San Diego 2006

https://gesportal.dod.mil/sites/necc/architecture/Shared%20Documents/Architecture%20Guidance/Web%20Portal%20Spec%20v11%20Final.doc

Part 2: Traceability

Page 425

G1760

Statement:

Solicit feedback from users on user interface usability problems.

Rationale:

Active testing and solicitation of input from users helps identify usability problems with the user interface and helps
to identify areas that may reduce performance or require excessive cognitive attention by the user.

Referenced By:

Human-Computer Interaction
Design Tenet: Be Responsive to User Needs

Evaluation Criteria:

1) Test: [G1760.1]

 Does the program solicit user feedback for user interface usability problems?

Procedure:

 Determine if user surveys are conducted on the usability of the system.

Example:

Part 2: Traceability

Page 426

G1761

Statement:

Provide units of measurements when displaying data.

Rationale:

Displayed units for measurable data provide for better understanding the data and enable reuse of the data. (This
guidance is derived from MIL-STD 1472F)

Referenced By:

Design Tenet: Make Data Interoperable
Human-Computer Interaction
Interoperability
Design Tenet: Make Data Understandable

Evaluation Criteria:

1) Test: [G1761.1]

 Does the system display units for all measurable data?

Procedure:

 Inspect the user interfaces for system and check that units are shown for all measurable data.

Example:

Length displayed as meters
Distance displayed as miles.

Part 2: Traceability

Page 427

G1762

Statement:

Indicate all simulated data as simulated.

Rationale:

Simulated data that is not marked as simulated may be of misinterpreted and can decrease system, user, or
system safety. (This guidance is derived from MIL-STD 1472F)

Referenced By:

Design Tenet: Make Data Trustable
Human-Computer Interaction
Design Tenet: Make Data Understandable

Evaluation Criteria:

1) Test: [G1762.1]

Is all simulated data clearly marked as simulated?

Procedure:

Check system inputs and outputs including user interfaces and check that the simulated data is properly labeled as
simulated.

Example:

None.

Part 2: Traceability

Page 428

G1763

Statement:

Indicate the security classification for all classified data.

Rationale:

Displaying classified data without clearing marking the classification can lead to incorrect assumptions about
the data. This can lead to improperly use of the data or prevent the data from being reused due to lack of clear
understanding of the classification. (This guidance is derived from MIL-STD 1472F)

Referenced By:

Interoperability
Design Tenet: Make Data Accessible
Design Tenet: Make Data Understandable
Design Tenet: Make Data Trustable
Human-Computer Interaction
Design Tenet: Make Data Interoperable

Evaluation Criteria:

1) Test: [G1763.1]

Does the system display classification markings for all classified data?

Procedure:

Check the system outputs and user interfaces for classification marking for all classified data or systems.

Example:

Classification banners on monitors
Classification banners on printouts

Part 2: Traceability

Page 429

G1770

Statement:

Explicitly define the Data Distribution Service (DDS) Domains for the system.

Rationale:

DDS uses Domains to separate the Global Data Spaces into independent areas. Topics written to one DDS
Domain are completely hidden from the other DDS Domains. Use DDS Domains for isolation (hiding subsystem
data from other parts of the system), modularity, and scalability. In order for systems to benefit from these
advantages, they must explicitly define their own DDS Domains rather than use the default DDS Domain.

Referenced By:

DDS Domains - Global Data Spaces
Design Tenet: Make Data Interoperable
Design Tenet: Open Architecture
Interoperability
Design Tenet: Make Data Understandable

Evaluation Criteria:

1) Test: [G1770.1]

Is the system using different DomainId values to isolate the subsystems?

Procedure:

Look for multiple calls to create_participant() operation on the DomainParticipantFactory.

Example:

participantFactory
 = TheParticipantFactory;
quickQuoterParticipant
 = participantFactory->create_participant
 (QUICK_QUOTER_DOMAIN_ID,
 PARTICIPANT_QOS_DEFAULT,
 NULL,
 DDS::STATUS_MASK_ALL
);
realtimeQuoterParticipant
 = participantFactory->create_participant
 (REALTIME_QUOTER_DOMAIN_ID,
 PARTICIPANT_QOS_DEFAULT,
 NULL,
 DDS::STATUS_MASK_ALL
);

 DDS::STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111

Part 2: Traceability

Page 430

G1771

Statement:

Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe the behavior
of a publisher.

Rationale:

DDS relies on the use of QoS characteristics to match publishers with subscribers. If the publishers do not
specify a QoS policy other than the default, much of the power of DDS publishing is lost and the capabilities of the
publisher are not documented.

Referenced By:

DDS Quality of Service
Design Tenet: Differentiated Management of Quality-of-Service
Interoperability

Evaluation Criteria:

1) Test: [G1771.2]

Is the get_default_publisher_qos operation used to create publisher?

Procedure:

Look for the use of the get_default_publisher_qos operation within the code.

Example:

participant
 = participantFactory->create_participant
 (QUOTER_DOMAIN_ID,
 PARTICIPANT_QOS_DEFAULT,
 NULL,
 DDS::STATUS_MASK_ALL
);
DDS::PublisherQos publisherQos;
Participant->get_default_publisher_qos
 (publisherQos);

DDS::STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111

2) Test: [G1771.1]

Are values other than the PUBLISHER_QOS_DEFAULT value used to create publishers?

Procedure:

Verify that the PUBLISHER_QOS_DEFAULT constant is not used within the code.

Part 2: Traceability

Page 431

Example:

DDS::Publisher publisher
 = participant->create_publisher
 (PUBLISHER_QOS_DEFAULT,
 NULL,
 DDS::STATUS_MASK_ALL
);

DDS::STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111

Part 2: Traceability

Page 432

G1772

Statement:

Assign a unique identifier for each Data-Distribution Service (DDS) Domain within the system.

Rationale:

DDS uses Domains to separate the Global Data Spaces into independent areas. Within DDS, a unique identifier
called the DomainId identifies each DDS Domain.

Referenced By:

DDS Domains - Global Data Spaces
Design Tenet: Make Data Interoperable
Interoperability

Evaluation Criteria:

1) Test: [G1772.1]

Is there a single value for the DomainId used for each Domain when the create_participant operation is used?

Procedure:

Look for the use of the create_participant operation within the code.

Example:

participantFactory
 = TheParticipantFactory;
quickQuoterParticipant
 = participantFactory->create_participant
 (QUICK_QUOTER_DOMAIN_ID,
 PARTICIPANT_QOS_DEFAULT,
 NULL,
 DDS::STATUS_MASK_ALL
);
realtimeQuoterParticipant
 = participantFactory->create_participant
 (REALTIME_QUOTER_DOMAIN_ID,
 PARTICIPANT_QOS_DEFAULT,
 NULL,
 DDS::STATUS_MASK_ALL
);

DDS::STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111

Part 2: Traceability

Page 433

G1773

Statement:

Use #include guards for all headers.

Rationale:

Including a guard prevents including a header file more than once. There are two basic kinds of guards: internal
and external. Internal guards occur in each header file that is to be included. External guards occur in a file that
includes a header file. In the past, there were compiling performance issues using internal guards because the
file had to be scanned each time the file was included. This has been optimized away by most modern compilers.
Furthermore, external guards are fragile and tightly coupled since the file including the header and header file must
use the same guard name.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 24.

Referenced By:

Reusability
C++ Header Files
Maintainability

Evaluation Criteria:

1) Test: [G1773.1]

Do all header files contain include guards?

Procedure:

Check each file that is included using a #include statement to make sure it has an include guard.

Example:

An internal guard looks like this:

Part 2: Traceability

Page 434

G1774

Statement:

Make header files self-sufficient.

Rationale:

To enable code reuse, each unit of code should be able to be compiled independently without having to follow a
predetermined build order or having to know the dependencies. Code is difficult to reuse when the dependencies
are not clearly documented. Therefore, ensure each header is capable of being used by itself (i.e, it can be
compiled standalone) by having it include all the headers upon which it depends.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 23.

Referenced By:

Maintainability
C++ Header Files
Reusability

Evaluation Criteria:

1) Test: [G1774.1]

Can each class be compiled by itself without having to compile other units?

Procedure:

Compile each class as a standalone file and check compile output for errors caused by missing definitions.

Example:

None

Part 2: Traceability

Page 435

G1775

Statement:

Do not overload the logical AND operator.

Rationale:

The logical AND operator has a special relationship with the compiler. When a logical AND operator is written
to overload the inherent operators, the precedence of operation (i.e., left side of operator or right side of
operator) is undefined. This can result in compiler dependency. In the following code, it is not clear whether the
DisplayPrompt will execute first or the GetLine operation will executed first.

if (DisplyPrompt() && GetLine())

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 30.

Referenced By:

Reusability
Maintainability
C++ Operator Overloading

Evaluation Criteria:

1) Test: [G1775.1]

Is the logical AND operator defined?

Procedure:

Look for the overloading of the logical AND operator.

Example:

None

Part 2: Traceability

Page 436

G1776

Statement:

Do not overload the logical OR operator.

Rationale:

The logical OR operator has a special relationship with the compiler. When a logical OR operator is written to
overload the inherent operators, the precedence of operation (i.e., left side of operator or right side of operator) is
undefined. This can result in compiler dependency.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 30.

Referenced By:

C++ Operator Overloading
Reusability
Maintainability

Evaluation Criteria:

1) Test: [G1776.1]

Is the logical OR operator defined?

Procedure:

Look for the overloading of the logical OR operator.

Example:

None

Part 2: Traceability

Page 437

G1777

Statement:

Do not overload the comma operator.

Rationale:

The comma operator has a special relationship with the compiler. When a comma operator is written to overload the
inherent operators, the precedence of operation (i.e., left side of operator or right side of operator) is undefined.
This can result in compiler dependency.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 30.

Referenced By:

C++ Operator Overloading
Maintainability
Reusability

Evaluation Criteria:

1) Test: [G1777.1]

Is the comma operator defined?

Procedure:

Look for the overloading of the comma operator.

Example:

None

Part 2: Traceability

Page 438

G1778

Statement:

Place all #include statements before all namespace using statements.

Rationale:

Files that are included can contain their own using clauses. In order to make sure that the using statements are
not overridden by these subsequent using definitions, place all using statements after all include statements.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 59.

Referenced By:

C++ Namespaces and Modules
Reusability
Maintainability

Evaluation Criteria:

1) Test: [G1778.1]

Are all the using statements defined after all the #include statements?

Procedure:

Scan all files and make sure that all the using statements occur after all using statements.

Example:

None

Part 2: Traceability

Page 439

G1779

Statement:

Explicitly namespace-qualify all names in header files.

Rationale:

Header files are meant to be included by other files. A header file inclusion should not alter the meaning of code
that it is included in as this behavior is unexpected. Therefore, use fully-qualified names in header files and do
not use using directives or declarations. This also promotes clarity in the header file whose main purpose is to
communicate the interface to the implementation class.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 59.

Referenced By:

C++ Header Files
Reusability
C++ Namespaces and Modules
Maintainability

Evaluation Criteria:

1) Test: [G1779.1]

Are named fully namespace qualified throughout the header files?

Procedure:

Scan all header files and make sure that all namespaces are fully qualified.

Example:

None

2) Test: [G1779.2]

Are all header files free from using directives or declarations?

Procedure:

Scan all header files to determine that they do not contain using directives or declarations.

Example:

None

Part 2: Traceability

Page 440

G1784

Statement:

Include a statement in the solicitation for Contractors to identify and list data rights for all proposed products.

Rationale:

Reusing GOTS requires understanding all the data rights associated with each artifact involved with the solution.

Referenced By:

Section K: Representations, Certifications, and Other Statements of Offerors (Data Rights)
Reusability

Evaluation Criteria:

1) Test: [G1784.1]

Does the solicitation include a statement for the offerer
to identify data rights for all proposed products?

Procedure:

Review the solicitation and identify statements that
require the offerer to identity data rights for all proposed
products.

Example:

Example data rights markings include markings for Unlimited Rights and Government Purpose Rights.

Part 2: Traceability

Page 441

G1785

Statement:

Stipulate that evaluation criteria will include the extent to which an Offeror's proposed technical solution builds on
reuse of common functionality.

Rationale:

The Government must stipulate what evaluation criteria will be used to evaluate proposed solutions. Having
the Offeror specify the extent to which proposed solutions build on reuse of common functionality aids in the
evaluation of proposals and aids in identification of common functionality.

Referenced By:

Reusability
Section M: Evaluation Factors for Award
Interoperability

Evaluation Criteria:

1) Test: [G1785.1]

Has the government stipulated that evaluation criteria will include the extent to which an Offeror's proposed technical
solution builds on reuse of common functionality?

Procedure:

Check Section M for a statement that states reuse of common functionality will be used as an evaluation criterion for
proposals.

Example:

None.

Part 2: Traceability

Page 442

G1786

Statement:

Stipulate that evaluation criteria will include the extent to which an Offeror's proposed technical solution builds on
well defined services.

Rationale:

The Government must stipulate what evaluation criteria will be used to evaluate proposed solutions. Having the
Offeror specify the extent to which proposed solutions build on reuse of well defined services aids in the evaluation
of proposals and further improves service reuse.

Referenced By:

Section M: Evaluation Factors for Award
Interoperability
Reusability

Evaluation Criteria:

1) Test: [G1786.1]

Has the government stipulated that evaluation criteria will include the extent to which an Offeror's proposed technical
solution builds on well defined services?

Procedure:

Check Section M for a statement that states the extent to which the proposed solution builds on well defined services
will be used as an evaluation criterion for proposals.

Example:

None.

Part 2: Traceability

Page 443

G1787

Statement:

Stipulate that the Offeror is to use NESI to assess net-centricity and interoperability.

Rationale:

NESI guidance and its associated checklists are useful tools (used by themselves or in conjunction with other
tools) for assessing how a program is meeting its net-centric and interoperability objectives.

Referenced By:

Interoperability
Reusability
Post Award Contract Actions
Section J: List of Attachments

Evaluation Criteria:

1) Test: [G1787.1]

Has the Government stipulated that the Offeror is to use NESI to assess net-centricity and interoperability?

Procedure:

Identify statements in policy, RFPs, SOWs, or CDRLs that stipulate that the Offeror is to use NESI to assess net-
centricity and interoperability?

Example:

PEO C4I uses the Technical Evaluation Checklist (http://nesipublic.spawar.navy.mil/checklist) as a means for
Program Managers to assess how well their programs meet net-centric objectives.

http://nesipublic.spawar.navy.mil/checklist

Part 2: Traceability

Page 444

G1788

Statement:

Stipulate that the Offeror is to use Government approved data rights labels and markings for all deliverables that
are identified as Unlimited or Government Purpose Rights.

Rationale:

Reusing deliverables or components of deliverables requires a full understanding of the data rights associated
with each artifact in the deliverable. Identified data rights for each artifact through the use of data right labels are
important in order to protect the legal rights of both the contractor and government during component reuse.

Referenced By:

Section J: List of Attachments
Reusability
Post Award Contract Actions

Evaluation Criteria:

1) Test: [G1788.1]

Has the government stipulated that the Offeror is to use government approved data rights labels and markings for all
deliverables that are identified as Unlimited or Government Purpose Rights.

Procedure:

Identify statements in the RFP, SOW, or CDRLs which mandate the use of government approved data rights labels for
any deliverables that are identified as Unlimited or Government Purpose Rights.

Example:

None.

Part 2: Traceability

Page 445

G1796

Statement:

Explicitly define all the Data Distribution Service (DDS) Domain Topics.

Rationale:

DDS uses Topics to define the information model. Topics are identified by an application-defined string and an
associated data type. Topics represent collections of object sin the Global Data Space; individual data-objects
within a Topic are identified by the value of the key fields which are some special fields inside the data-type.
Applications use Topics to publish the information and subscribe to the information they want.

In a DDS system information exchange happens as a result of publishers and subscribers agreeing to use
the same Topics. Therefore the selection of the Topic names and their semantic meaning is an important part of
system design.

Referenced By:

Messaging within a DDS Domain
Design Tenet: Make Data Interoperable
Interoperability
Design Tenet: Make Data Understandable

Evaluation Criteria:

1) Test: [G1796.1]

Are all the Topics (and Topic names) the system uses explicitly defined and captured in a centralized document (e.g.,
Excel table, XML file, dedicated tool)?

Procedure:

Look for documentation that contains listings for all Topics the system uses.

Example:

<topic>
 <name>Temperature</name>
 <type>TemperatureData</type>
 <description>
 This topic contains a reading of
 a temperature sensor
 </description>
</topic>
<topic>
 . . .
</topic>

Part 2: Traceability

Page 446

G1797

Statement:

Use a minimum of 1024 bits for asymmetric keys.

Rationale:

Strong encryption helps to prevent unauthorized data decryption using modern day resources.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Encryption Services
Design Tenet: Encryption and HAIPE

Evaluation Criteria:

1) Test: [G1797.1]

Are asymmetric key encryption levels at least 1024 bit?

Procedure:

Check the server configuration and verify that the asymmetric keys being used are at least 1024 bit.

Example:

Verified Web server ciphers under the SSL portion of the configuration pages of the administration server.
For Internet Explorer 5.0 and above, click the HelpHelp menu and then click the About Internet Explorer
option. The About box will list the Cipher Strength.

2) Test: [G1797.2]

Is the application using domestic (U.S.) grade ciphers?

Procedure:

Verify that the application supports domestic (U.S.) grade ciphers.

Example:

None.

Part 2: Traceability

Page 447

G1798

Statement:

Explicitly define all the Data Distribution Service (DDS) Domain data types.

Rationale:

DDS provides support for writing and reading typed data. For each application data type, DDS creates the
necessary objects that allow manipulation of the data object. For example, for a given data type named MyDT,
DDS creates a MyDTDataWriter and MyDTDataReader.

Knowing the data type of the object allows DDS to marshal the data properly. Consequently, any computer
platform and/or language can process the data properly . For example, DDS performs the proper endianess
transformations, alignment, and adjustment for 32 versus 64 bit platforms.
Knowing the data type is also required for the proper functioning of ContentFilteredTopics.

Moreover, explicit definition of the data types is required for the tools provided by DDS vendors to display and
manipulate the data properly. Visualization tools, logging and replay, automatic bridging to other middleware, etc.,
all depend on data type transparency.

Referenced By:

Messaging within a DDS Domain
Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable
Interoperability

Evaluation Criteria:

1) Test: [G1798.1]

Are all the data types the system uses explicitly defined using IDL which is either manually written or generated from
equivalent UML or XML representations?

Procedure:

Look for the IDL (or equivalent XML) files used to define the types used by the system.

Example:

// File MyTpes.idl
struct MyType
{
 long x;
 long y;
 string<10> units;
};

Part 2: Traceability

Page 448

G1799

Statement:

Explicitly associate data types to the Data Distribution Service (DDS) Topics within a DDS Domain

Rationale:

A DDS Topic represents a homogeneous collection of data-objects in the Global Data Space. All data-objects
within a Topic share a common data-type. Knowledge of the type associated with the Topic is required for an
application to be able to publish and subscribe data on the Topic.

Referenced By:

Interoperability
Messaging within a DDS Domain
Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable

Evaluation Criteria:

1) Test: [G1799.1]

Do all Topics have an explicit association to a data type.

Procedure:

Look for documentation that lists the Topics in use by the system and verify that each Topic has a data type
associated with it

Example:

<topic>
 <name>Temperature</name>
 <type>TemperatureData</type>
 <description>
 This topic contains a reading of
 a temperature sensor
 </description>
</topic>
<topic>
 . . .
</topic>

Part 2: Traceability

Page 449

G1800

Statement:

Explicitly identify Keys within the Data Distribution Service (DDS) data type that uniquely identify an instance of
a data object.

Rationale:

Within each DDS Domain (i.e., Global Data Space) a data-object is identified by the tuple (Topic, Key). The Key
is a set of fields within the data type associated with the Topic that the application has tagged to indicate their role
in uniquely identifying the data object. For example, if the Topic represents a person to the IRS, the Key may be
simply the field containing the social security number.

The proper definition of the key is necessary to allow DDS to implement the KEEP_LAST HISTORY QoS properly
as well as to enforce QoS policies such as DEADLINE, and OWNERSHIP. It is also necessary in order for DDS to
supply the proper Sample information to the DataReader.

All data types require Keys except in the case where the Topic logically represents a single object, for example
when the Topic represents a Message Queue.

Referenced By:

Messaging within a DDS Domain
Design Tenet: Make Data Interoperable
Design Tenet: Make Data Understandable
Interoperability

Evaluation Criteria:

1) Test: [G1800.1]

Does the declaration of the data-type associated with the Topic explicitly designate using one or more of the fields as
a Key?

Procedure:

Examine the IDL (or equivalent XML) files used to define the types used by the system to identify the declaration of
the data-type associated with each Topic (i.e., see if there are any tags that designate which fields form the Key).

Example:

For data types defined using IDL:
struct SensorData
{
 long sensor_id; //@key
 float value;
 string<32> units;
 string<64> location;
};
struct DepartingFlightData
{
 string<8> airline_code; //@key
 long flight_number; //@key
 string<8> destination_airport_code;
 string<2> departing_terminal;
 long departing_gate;
 FlightTime scheduled_departure_time;

Part 2: Traceability

Page 450

 FlightTime expected_departure_time;
 string<32> status;
};

Part 2: Traceability

Page 451

G1801

Statement:

Explicitly define a Topic Quality of Service (QoS) for each Data Distribution Service (DDS) Topic within a DDS
Domain.

Rationale:

DDS Topics define the information model of the system. The QoS Policies associated with the Topics define
expectations and constraints that all users (publishers or subscribers) of the Topic should know. Consequently,
definition of the Topic QoS is an important part of the system design.

Referenced By:

Interoperability
Messaging within a DDS Domain
Design Tenet: Differentiated Management of Quality-of-Service
DDS Quality of Service

Evaluation Criteria:

1) Test: [G1801.1]

Is there a document that defines the QoS Policies that each Topic uses and does the document that describes the
Topics and their associated data types also provide information on the Topic QoS?

Procedure:

Look at the documents that define the Topics in use and their associated data-types and see if they also define the
Topic QoS.

Example:

Topic: DepartingAircraft
Type: DepartingAircraftStruct
QoS: HISTORY kind=KEEP_LAST
QoS: RELIABILITY kind=RELIABLE
QoS: DEADLINE duration=15minutes
QoS: LIFESPAN duration = 1 hour
Etc.

Part 2: Traceability

Page 452

G1803

Statement:

Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe real-time
messaging criteria for Publishers.

Rationale:

DDS relies on the use of a QoS set of characteristics to match publishers with subscribers. If the publishers do
not specify a QoS policy other than the default, much of the power of DDS publishing is lost and the capabilities of
the publisher are not documented.

Referenced By:

DDS Quality of Service
Design Tenet: Differentiated Management of Quality-of-Service
Interoperability

Evaluation Criteria:

1) Test: [G1803.2]

Is the get_default_publisher_qos operation used to create publisher?

Procedure:

Look for the use of the get_default_publisher_qos operation within the code.

Example:

participant
 = participantFactory->create_participant
 (QUOTER_DOMAIN_ID,
 PARTICIPANT_QOS_DEFAULT,
 NULL,
 DDS::STATUS_MASK_ALL
);
DDS::PublisherQos publisherQos;
Participant->get_default_publisher_qos
 (publisherQos);

DDS::STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

2) Test: [G1803.1]

Is the PUBLISHER_QOS_DEFAULT value used to create publishers?

Procedure:

Look for the use of the PUBLISHER_QOS_DEFAULT constant within the code.

Part 2: Traceability

Page 453

Example:

DDS::Publisher publisher
 = participant->create_publisher
 (PUBLISHER_QOS_DEFAULT,
 NULL,
 DDS::STATUS_MASK_ALL
);

DDS::STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

Part 2: Traceability

Page 454

G1804

Statement:

Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe DataWriter.

Rationale:

DDS relies on the use of QoS characteristics to match a DataWriter with each DataReader of the same Topic.
If the DataWriter does not specify a QoS policy other than the default, much of the power of DDS publishing is
lost and the capabilities of the DataWriter are not documented.

Referenced By:

Design Tenet: Differentiated Management of Quality-of-Service
Interoperability
DDS Quality of Service

Evaluation Criteria:

1) Test: [G1804.2]

Is the get_default_datawriter_qos operation used to create participant?

Procedure:

Look for the use of the get_default_datawriter_qos operation within the code.

Example:

DDS::DataWriterQos dataWriterQos;
publisher->get_default_datawriter_qos
 (dataWriterQos);
DDS::DataWriter dataWriter
 = publisher ->create_datawriter
 (myTopic,
 dataWriterQos,
 NULL,
 DDS::STATUS_MASK_ALL
);

DDS::STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

2) Test: [G1804.1]

Is the DATAWRITER_QOS_DEFAULT value used to create DataWriter?

Procedure:

Look for the use of the DATAWRITER_QOS_DEFAULT constant within the code.

Example:

DDS::DataWriter dataWriter

Part 2: Traceability

Page 455

 = participant->create_datawriter
 (myTopic,
 DATAWRITER_QOS_DEFAULT,
 NULL,
 DDS::STATUS_MASK_ALL
);

DDS::STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

Part 2: Traceability

Page 456

G1805

Statement:

Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe the behavior
of the Subscriber.

Rationale:

DDS relies on the use of QoS set of characteristics to match subscribers with publishers. If the subscribers do not
specify a QoS policy other than the default, much of the power of DDS subscription and publishing is lost and the
requirements of the subscriber are not documented.

Referenced By:

Design Tenet: Differentiated Management of Quality-of-Service
Interoperability
DDS Quality of Service

Evaluation Criteria:

1) Test: [G1805.1]

Is the SUBSCRIBER_QOS_DEFAULT value used to create subscribers?

Procedure:

Look for the use of the SUBSCRIBER_QOS_DEFAULT constant within the code.

Example:

DDS::Publisher publisher
 = participant->create_subscriber
 (SUBSCRIBER_QOS_DEFAULT,
 NULL,
 DDS::STATUS_MASK_ALL
);

DDS::STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

2) Test: [G1805.2]

Is the get_default_subscriber_qos operation used to create subscribers?

Procedure:

Look for the use of the get_default_subscriber_qos operation within the code.

Example:

participant
 = participantFactory->create_participant
 (QUOTER_DOMAIN_ID,
 PARTICIPANT_QOS_DEFAULT,

Part 2: Traceability

Page 457

 NULL,
 DDS::STATUS_MASK_ALL
);
DDS::SubscriberQos subscriberQos;
Participant->get_default_subscriber_qos
 (subscriberQos);

DDS::STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

Part 2: Traceability

Page 458

G1806

Statement:

Explicitly define the Request-Offered Data Distribution Service (DDS) Quality of Service (QoS) Policies to
describe the behavior of the DataReader.

Rationale:

DDS relies on the use of QoS characteristics to match a DataWriter with each DataReader of the same Topic. If
the DataReader does not specify a QoS policy other than the default, much of the power of DDS subscription and
publishing is lost and the requirements of the DataReader are not documented.

Referenced By:

Interoperability
Design Tenet: Differentiated Management of Quality-of-Service
DDS Quality of Service

Evaluation Criteria:

1) Test: [G1806.1]

Is the DATAREADER_QOS_DEFAULT value used to create DataReader?

Procedure:

Look for the use of the DATAREADER_QOS_DEFAULT constant within the code.

Example:

DDS::DataResder dataReader
 = participant->create_datareader
 (DATAREADER_QOS_DEFAULT,
 NULL,
 DDS::STATUS_MASK_ALL
);

DDS::STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

2) Test: [G1806.2]

Is the get_default_datareader_qos operation used to create participant?

Procedure:

Look for the use of the get_default_datareader_qos operation within the code.

Example:

DDS::DataReaderQos dataReaderQos;
publisher->get_default_datareader_qos
 (dataReaderQos);
DDS::DataReader dataReader

Part 2: Traceability

Page 459

 = publisher ->create_datareader
 (myTopic,
 dataReaderQos,
 NULL,
 DDS::STATUS_MASK_ALL
);

Part 2: Traceability

Page 460

G1808

Statement:

Handle all Data Distribution Service (DDS) Quality of Service (QoS) contract violations using one of the
Subscriber access APIs.

Rationale:

QoS contract violations typically indicate either a system mis-configuration, or else a transient failure (e.g.,
a network that has been temporarily disconnected). Either way the application must monitor these events to
determine if they are relevant to their operation and consequently take proper corrective action.

Referenced By:

Interoperability
Design Tenet: Differentiated Management of Quality-of-Service
DDS Quality of Service

Evaluation Criteria:

1) Test: [G1808.1]

Are all the DDS QoS-related status change events are captured via a DDS Listener or a DDS WaitSet?

Procedure:

Specifically ensure that the following DDS events are handled. Look at the arguments passed to the
create_domain_participant, create_datawriter, and create_datareader_operations and check that
the listener and mask parameters to verify that the following events are being handled:

• OFFERED_DEADLINE_MISSED_STATUS

• REQUESTED_DEADLINE_MISSED_STATUS

• OFFERED_INCOMPATIBLE_QOS_STATUS

• REQUESTED_INCOMPATIBLE_QOS_STATUS

• LIVELINESS_LOST_STATUS

• LIVELINESS_CHANGED_STATUS

Example:

participantFactory
 = TheParticipantFactory;
quickQuoterParticipant
 = participantFactory->create_participant
 (QUICK_QUOTER_DOMAIN_ID,
 PARTICIPANT_QOS_DEFAULT,
 participantListener,
 DDS::STATUS_MASK_ALL
);

Part 2: Traceability

Page 461

DDS::STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

Part 2: Traceability

Page 462

G1810

Statement:

Use data models to document the data contained within the Data Distribution Service (DDS) Data-Centric
Publish Subscribe (DCPS).

Rationale:

DCPS contains static and raw data that can be used is any number of views or objects. As a consequence,
changes in the definition of the data, its DDS Domains or its structure can have a huge cascading effect. To
minimize the impact of these changes, data needs to be documented in a data model that is not subject to
implementation.

Referenced By:

Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable
Reading/Writing Objects within a DDS Domain
Interoperability
Decoupling Using DDS and Publish-Subscribe

Evaluation Criteria:

1) Test: [G1810.1]

Is there a conceptual data model that captures the data within the DCPS?

Procedure:

Look for a data model that captures the data within the Data-Centric Publish-Subscribe (DCPS). The following is a
very short list of some of the files extensions that may contain data models.

CDM Conceptual model file (PowerDesigner)

PDM Physical model file (PowerDesigner)

ER1 ERWin file

ERX ERWin file

ERM Entity Relationship Diagram Model file (Prosa)

Example:

Part 2: Traceability

Page 463

G1835

Statement:

Document plans to migrate to net-centricity.

Rationale:

Net-centric migrations are often lengthy and subject to many factors. A formal migration plan guides the migration
activities while addressing this complexity in an organized manner. Such a plan can provide tools for setting clear
scope and targets, for measuring the migration progress against stated objectives, for proper documentation and
for mitigating risks. Even small-scale migrations will benefit from having a formal migration plan, but the migration
plan will be correspondingly less complex and easier to generate and maintain.

Referenced By:

Finalize Migration Plan
Migration Planning Process

Evaluation Criteria:

1) Test: [G1835.1]

Does the project have a plan to support migration to net-centricity?

Procedure:

Verify the presence of a plan supporting migration to net-centricity.

Example:

Ways to determine that there is a net-centric migration plan include reviewing the Information Support Plan (ISP) or
contractual language (if the plan is a deliverable by contractor).

Part 2: Traceability

Page 464

BP1255

Statement:

Use surrogate keys.

Rationale:

A surrogate key, also referred to as a system-generated key, database-sequence number, or arbitrary unique
identifier, is a unique, arbitrary primary key. The RDBMS usually generates the surrogate key, but a database
access layer such as the middle tier can also generate the surrogate key. The surrogate key is arbitrary because
it is not derived from any data that exists within the table or the database. Another option for surrogate keys
is Universally Unique Identifiers (UUIDs) (http://en.wikipedia.org/wiki/Universally_Unique_Identifier), the most
common implementation being Microsoft's Globally Unique Identifiers (GUIDs) (http://en.wikipedia.org/wiki/
Globally_Unique_Identifier).

Referenced By:

RDBMS Internals

http://en.wikipedia.org/wiki/Universally_Unique_Identifier
http://en.wikipedia.org/wiki/Globally_Unique_Identifier
http://en.wikipedia.org/wiki/Globally_Unique_Identifier

Part 2: Traceability

Page 465

BP1256

Statement:

Use surrogate keys as the primary key.

Rationale:

Instead of using the natural keys to identify each record uniquely, use a surrogate key. This allows the natural key
information to be modified independently of the primary key and any foreign-key references to the key.

Referenced By:

RDBMS Internals
Database Development

Evaluation Criteria:

1) Test: [BP1256.1]

Are surrogate keys used instead of natural keys?

Procedure:

Look at the database metadata and determine if it uses surrogate or natural keys.

Example:

The following example shows natural keys. The primary keys are made up completely or in part from naturally
occurring data in the tables.

Part 2: Traceability

Page 466

The following example shows a surrogate key being used instead of a natural key. Maintaining data is less complex
than it is with natural keys and consequently less error-prone.

Part 2: Traceability

Page 467

BP1257

Statement:

Place a unique key constraint on the natural key fields.

Rationale:

Surrogate keys make it easier to maintain data. However, a column or set of columns should still uniquely identify
the row in the table. This column or set of columns is the "natural key" or "secondary key." This natural key should
still be protected by the uniqueness constraint normally associated with a primary key.

Referenced By:

RDBMS Internals

Evaluation Criteria:

1) Test: [BP1257.1]

Is there a unique key index for all tables that includes a column or set of columns not including the primary key?

Procedure:

Look at the database metadata to ensure that each table has a unique key, and that the columns in the unique key are
not also part of the primary key.

Example:

Part 2: Traceability

Page 468

BP1375

Statement:

Use asymmetric encryption for SOAP-based Web services.

Rationale:

Most Web services exchange very few messages so the fact that asymmetric encryption is computationally
intensive is a non-issue. Symmetric encryption is more efficient, but it is done by sharing a secret key outside the
SOAP message communication which is less portable.

Referenced By:

XML Web Service Security
Design Tenet: Encryption and HAIPE
Design Tenet: Identity Management, Authentication, and Privileges

Part 2: Traceability

Page 469

BP1392

Statement:

Register services in accordance with a documented service registration plan.

Rationale:

Program information services are provided via a shared space for use by consumers. In order to locate these
services and access the corresponding information provided, the services should be registered in the service
registry per direction of the shared information space manager.

Referenced By:

Design Tenet: Be Responsive to User Needs
Design Tenet: Make Data Visible
Metadata Registry
Design Tenet: Make Data Accessible
Design Tenet: Make Data Interoperable
Design Tenet: Provide Data Management
Design Tenet: Make Data Understandable
Interoperability
Reusability

Evaluation Criteria:

1) Test: [BP1392.1]

Has the Program generated default service definitions and registered them in the DoD service registry?

Procedure:

Review that there is a service definition (URLs, WSDL entries, etc.) for each of the program information services and
that they have been registered accordingly.

Example:

None

Part 2: Traceability

Page 470

BP1400

Statement:

Programs will use authoritative metadata established by the Joint Mission Threads (JMTs) when available.

Rationale:

Referenced By:

Design Tenet: Joint Net-Centric Capabilities
Data Modeling

Part 2: Traceability

Page 471

BP1404

Statement:

For DoD Programs requiring a data model, the NATO Generic Hub v.5 model (LC2IEDM) is an example of a
successful COI-developed model.

Rationale:

The Land C2 Information Exchange Data Model (LC2IEDM), or Generic Hub (GH, now version 5) model has
been under development in the NATO environment. This model is a rich Joint battlespace operational context
model. Many NATO countries have developed prototypes. The U.S. Army has also been active in the Generic Hub
efforts.

Referenced By:

Reading/Writing Objects within a DDS Domain
Metadata Registry

Part 2: Traceability

Page 472

BP1594

Statement:

Examine the use of Transmission Control Protocol (TCP) extentions and other transport protocols that have
been designed to mitigate risk for high bandwidth, high latency satellite communications.

Rationale:

TCP performance over satellite links is generally poor due to delays and blockages inherent to satellite links. TCP
extensions (e.g., IETF RFC 1323) and other transport protocols that have been developed to mitigate this risk
should be considered for high bandwidth, high latency satellite communications.

Referenced By:

Mobile Nodes
Design Tenet: Transport Goal

Evaluation Criteria:

1) Test: [BP1594.1]

If the system is involved in high bandwidth, high latency satellite communications, does the Node design address TCP
performance?

Procedure:

Determine if parts of the system involve high bandwidth, high latency satellite communications and if so, look for a
TCP extension.

Example:

None.

http://www.rfc-editor.org/rfc/rfc1323.txt

Part 2: Traceability

Page 473

BP1614

Statement:

Prepare a Node for the possibility of becoming a new Component service within another Node.

Rationale:

While the complexities of nested Nodes are currently not addressed within NESI Part 4, nested Nodes are a
possibility; thus, Nodes should be prepared to interact in such an environment. Following the guidance for Nodes
in Part 4 should be sufficient to prepare the Node for such interactions by encouraging the proper definition of key
interfaces and capabilities and creating a distinction between Nodal infrastructure and Component capabilities.
These distinctions would allow a Node, for example, to supplant it's own infrastructure with those of it's new parent
Node (either directly or via proxies).

Note: The purpose of this practice is not necessarily to encourage nested Nodes, but to ensure that Nodes
apply appropriate open modular designs both externally and internally to ensure greater interoperability in a
variety of environments.

Referenced By:

Web Client Platform
Design Tenet: Cross-Security-Domains Exchange
Cross-Domain Interoperation

Evaluation Criteria:

1) Test: [BP1614.1]

Does the Node use standardized interfaces to obtain the services of routine activities?

Procedure:

Look for alignment and adherence to guidance of NESI Part 4 and open systems approaches.

Example:

None.

Part 2: Traceability

Page 474

BP1651

Statement:

Do not implement server side CES functionality for Components.

Rationale:

The burden of aligning to standard CES functionality and providing the functionality uniformly rests on the
Node infrastructure, rather than the Components within the Node. This isolates the Components from the CES
complexity and enhances portability and interoperability of the Components.

Referenced By:

Design Tenet: Network Connectivity
CES and Intermittent Availability

Evaluation Criteria:

1) Test: [BP1651.1]

Do any Component systems, applications or services implement any of the server side CES Global Information Grid
(GIG) Key Interface Profiles (KIPs)?

Procedure:

Review the Component systems, applications or services code for implementations of the server side CES Global
Information Grid (GIG) Key Interface Profiles (KIPs).

Example:

None.

Part 2: Traceability

Page 475

BP1661

Statement:

Engage with the Net-Centric Enterprise Services (NCES) program office to explore approaches for mobile use
of the Core Enterprise Services (CES) services in mobile Nodes that rely on Transmission Control Protocol/
Internet Protocol (TCP/IP) for inter-node communication.

Rationale:

Referenced By:

CES Definitions and Status
Design Tenet: Joint Net-Centric Capabilities

Part 2: Traceability

Page 476

BP1663

Statement:

Design a Domain Name System (DNS) in coordination with the appropriate governing Internet Protocol Version 6
(IPv6) Transformation Office.

Rationale:

Referenced By:

Design Tenet: IPv6
Domain Name System (DNS)

Part 2: Traceability

Page 477

BP1669

Statement:

Select XML-capable trusted guards.

Rationale:

As XML is a fundamental transfer format for data in interoperable net-centric environments, trusted guards should
be capable of transferring XML data to facilitate cross-domain interoperability.

Referenced By:

Design Tenet: Cross-Security-Domains Exchange
Trusted Guards

Part 2: Traceability

Page 478

BP1670

Statement:

Monitor Black Core implementation issues and prepare a plan for local implementation in coordination with system
programs fielded within the Node.

Rationale:

Referenced By:

Design Tenet: Concurrent Transport of Information Flows
Black Core

Part 2: Traceability

Page 479

BP1671

Statement:

Consider Black Core transition whenever there is a significant Node network design or configuration decision to
make in an effort to avoid costly downstream changes caused by Black Core transition.

Rationale:

Referenced By:

Black Core
Design Tenet: Concurrent Transport of Information Flows

Part 2: Traceability

Page 480

BP1672

Statement:

Be prepared to integrate fully with the Information Assurance (IA) infrastructure.

Rationale:

Referenced By:

Design Tenet: Net-Centric IA Posture and Continuity of Operations
Web Client Platform

Part 2: Traceability

Page 481

BP1681

Statement:

Make Component services metrics visible and accessible as part of the service registration and updated
periodically.

Rationale:

Metrics are normally also needed to ensure performance is provided according to more traditional Service Level
Agreements (SLAs) and for operations management.

Referenced By:

Instrumentation for Metrics
Design Tenet: Joint Net-Centric Capabilities

Part 2: Traceability

Page 482

BP1686

Statement:

Align Node interfaces to Components for directory services with the guidance being provided by the Joint
Enterprise Directory Services Working Group (JEDIWG) and sub-working groups, including such guidance as
naming conventions, federation, and synchronization.

Rationale:

Referenced By:

Design Tenet: Joint Net-Centric Capabilities
Directory Services

Part 2: Traceability

Page 483

BP1689

Statement:

Use the Service Discovery (SD) pilot program to practice and exercise the mechanics of service discovery and
late binding.

Rationale:

The pilot program provides an opportunity to practice and exercise the mechanics of Service Discovery (SD) and
late binding.

Referenced By:

Service Discovery
Design Tenet: Service-Oriented Architecture (SOA)

Part 2: Traceability

Page 484

BP1691

Statement:

Use Node implemented Service Discovery (SD) to meet compartmentalization needs.

Rationale:

For pilot implementations that are not reachable, such as might be the case in a higher classified environment, the
Nodes should coordinate among themselves and DISA to provide pilot and full service implementations that are
reachable.

Referenced By:

Design Tenet: Cross-Security-Domains Exchange
Cross-Domain Interoperation
Service Discovery

Part 2: Traceability

Page 485

BP1698

Statement:

 Plan for the event that Component services within a Node cannot be invoked across security domains.

Rationale:

Until such approaches are prototyped and explored more fully, Nodes should anticipate that services will not be
capable of cross-domain invocation.

Referenced By:

Cross-Domain Interoperation
Design Tenet: Cross-Security-Domains Exchange

Part 2: Traceability

Page 486

BP1701

Statement:

Configure Components for Information Assurance (IA) in accordance with the Network Security Technical
Implementation Guide (STIG).

Rationale:

Referenced By:

Design Tenet: Net-Centric IA Posture and Continuity of Operations
Network Information Assurance

Part 2: Traceability

Page 487

BP1705

Statement:

Design DNS infrastructure in accordance with appropriate governing IPv6 Transition Office requirements.

Rationale:

Referenced By:

IPv4 to IPv6 Transition
Domain Name System (DNS)
Design Tenet: IPv6

Part 2: Traceability

Page 488

BP1712

Statement:

Register developed mappings in the DoD Metadata Registry.

Rationale:

Referenced By:

Mediation Services
Design Tenet: Joint Technical Architecture [now DISR]

Part 2: Traceability

Page 489

BP1715

Statement:

Design SCA log services according to the OMG Lightweight Log Service Specification.

Rationale:

One component of the SCA framework is a central logging facility, enabling the asynchronous collection of
informational messages from any component connected to the framework; and the controlled read access
to this information. The Lightweight Logging Service is a free-standing, self-contained service which is not
connected to an event channel or similar infrastructure. Using a standard log service specification between SCA
implementations can improve interoperability and portability.

Referenced By:

Software Communication Architecture
Design Tenet: RF Acquisition

Evaluation Criteria:

1) Test: [BP1715.1]

Is the logging service designed according to the OMG Lightweight Log Service Specification? Is the logging service
designed according to the OMG Lightweight Log Service Specification?

Procedure:

Check the log service provider's documentation for compliance with the OMG Lightweight Log Service Specification.

Example:

Part 2: Traceability

Page 490

BP1732

Statement:

Follow the Upper Camel Case (UCC) naming convention for XML Type names.

Rationale:

The predominate style used by most programs or projects is to use the Upper Camel Case (UCC) for type names.
Type names should be easy to differentiate from namespace prefixes and from attributes. Since the namespace
prefix and the type name are separated by a non-whites character (i.e., the colon, :), it is easier to identify the type
name from the namespace name if the type name follows the UCC.

Referenced By:

Defining XML Schemas
Defining XML Types

Evaluation Criteria:

1) Test: [BP1732.1]

Do type names follow the Upper Camel Case (UCC) naming convention?

Procedure:

Examine the schema definition and verify that the type names follow the Upper Camel Case (UCC) name convention.

Example:

 <xsd:complexType
 name="MyType"
 . . .
 </ xsd:coplexType>

Part 2: Traceability

Page 491

BP1733

Statement:

Follow the Upper Camel Case (UCC) naming convention for XML element names.

Rationale:

The predominate style used by most programs or projects is to use the Upper Camel Case (UCC) for XML
element names. Element names should be easily differentiable from namespace prefixes and from attributes.
Since the namespace prefix and the element name are separated by a non-whites character (i.e., the colon, :), it is
easier to identify the element name from the namespace name if the element name follows the UCC.

Referenced By:

Defining XML Schemas

Evaluation Criteria:

1) Test: [BP1733.1]

Do element names follow the Upper Camel Case (UCC) naming convention?

Procedure:

Examine the schema definition and verify that the element names follow the Upper Camel Case (UCC) name
convention.

Example:

Part 2: Traceability

Page 492

BP1734

Statement:

Follow the Lower Camel Case (LCC) naming convention for XML attributes.

Rationale:

The predominate style used by most programs or projects is to use the Lower Camel Case (LCC) for XML
attribute names. Attributes are part of an attribute list which is a set of name="value" expressions separated by
whitespace. Therefore, it is easy to find the beginning of the attribute name.

Referenced By:

Defining XML Schemas

Evaluation Criteria:

1) Test: [BP1734.1]

Do type names follow the Upper Camel Case (UCC) naming convention?

Procedure:

Examine the schema definition and verify that the type names follow the Upper Camel Case (UCC) name convention.

Example:

Part 2: Traceability

Page 493

BP1790

Statement:

Stipulate that the Offeror is to describe how the proposed technical solution reuses services from other systems or
demonstrates composeability and extensibility by building from existing reusable components and/or services.

Rationale:

Reuse of existing components and services leads to reduced costs and promotes modularity and composability.
Reusable artifacts are common in large distributed networks. Future systems will be required to demonstrate
composing new solutions from reusable components and services.

Referenced By:

Section L: Instructions, Conditions, and Notices to Offerors
Design Tenet: Layering and Modularity

Evaluation Criteria:

1) Test: [BP1790.1]

Does the Offeror demonstrate reuse of existing components or services?

Procedure:

Identify in the proposal the components or services identified as being reused.

Example:

None.

Part 2: Traceability

Page 494

BP1824

Statement:

Use the USER_DATA Quality of Service (QoS) to communicate metadata on the DomainParticipant that may be
used to authenticate the application trying to join the Data Distribution Service (DDS) Domain.

Rationale:

In many cases the application needs to send additional information that describes the DomainParticipant to
other participants in the DDS Domain. This information can be used to authenticate the participant or to meet any
other application-specific need.

The USER_DATA QoS on the DomainParticipant allows the application to store un-interpreted bytes that will be
propagated via the DDS built-in discovery mechanism and will be accessible to the other DomainParticipants
on the system.

Referenced By:

DDS Quality of Service

Evaluation Criteria:

1) Test: [BP1824.1]

Is the USER_DATA QoS set on the DomainParticipant?

Procedure:

Check the creation of the DomainParticipant and determine whether the USER_DATA QoS is used. Ensure that
the application does not use another non-standard way to accomplish the same function.

Example:

None.

Part 2: Traceability

Page 495

BP1826

Statement:

Use the USER_DATA Quality of Service (QoS) on the DataWriters and DataReaders to communicate metadata
that may provide application-specific information of the entity writing/reading data in a Data Distribution Service
(DDS) Domain.

Rationale:

In many cases the application needs to send additional information that describes the DataWriter or the
DataReader to other entities in the DDS Domain. This information can be used to authenticate the DataWriter/
Reader or to meet any other application-specific need.

The USER_DATA QoS on the DataWriter and the DataReader allows the application to store un-interpreted
bytes that will be propagated via DDS's built-in discovery mechanism and will be accessible to the other
DataWriters and DataReaders on the system.

Referenced By:

DDS Quality of Service

Evaluation Criteria:

1) Test: [BP1826.1]

Is the USER_DATA QoS set on the DataWriter and DataReader?

Procedure:

Check the creation of the DataWriter and DataReader and determine whether the USER_DATA QoS is used.
Ensure that the application does not use another non-standard way to accomplish the same function.

Example:

None.

Part 2: Traceability

Page 496

BP1829

Statement:

Use the Data Distribution Service (DDS) OWNERSHIP Quality of Service (QoS) kind set to EXCLUSIVE when
multiple DataWriters cannot write each unique data-object within a DDS Topic simultaneously.

Rationale:

DDS easily supports multiple publishers adding data to the same topic without impacting the subscribers. Using
the DDS OWNERSHIP QoS kind set to EXCLUSIVE places the entire burden off supporting the multiple publishers
on the DDS implementation rather than the publisher or subscriber code. This results in an increase of modularity,
portability and the maintainability.

Referenced By:

Design Tenet: Layering and Modularity
DDS Quality of Service

Part 2: Traceability

Page 497

BP1830

Statement:

Use the Data Distribution Service (DDS) Content Profile to tailor subscription message data.

Rationale:

The DDS Content Profile allows for the subscribers to select and refine the data that is retrieved from a Topic.
This tailoring code is part of the DDS infrastructure and is well tested and reliable. Not using the DDS Content
Profile and using code within the subscriber increases the complexity of the subscriber and causes tight coupling
between the subscriber code and the Topic.

Referenced By:

Design Tenet: Network Connectivity
Decoupling Using DDS and Publish-Subscribe

Part 2: Traceability

Page 498

BP1832

Statement:

Handle all Data Distribution Service (DDS) Data Local Reconstruction Layer (DLRL) Exceptions.

Rationale:

The DLRL API may raise Exceptions under certain conditions. The following is an extensive list of all possible
Exceptions and the conditions in which they will be raised:

Part 2: Traceability

Page 499

BP1833

Statement:

Use the Data Distribution Service (DDS) Object Model Profile for accessing message data as objects.

Rationale:

The DDS Data Local Reconstruction Layer (DLRL) is intended to provide an abstraction layer between the
actual underlying data and the higher level object level concepts used in applications. The Object Model Profile
defines how applications interact with the abstract object layer. Applications that are bound directly to the actual
underlying data are tightly coupled to the layer and are subject to its evolutionary changes.

Note: DLRL, a recent addition to the DDS specification is particularly rich; implementations using this upper
level profile of the specification are still emerging.

Referenced By:

DDS Data Local Reconstruction Layer (DLRL)

Part 2: Traceability

Page 500

BP1836

Statement:

Obtain consensus on the migration plan from all key stakeholders.

Rationale:

The stakeholders present varying viewpoints about issues associated with the migration plan. Obtaining
consensus from key stakeholders on the migration plan can prevent critical miscommunication and support the
management of expectations.

Referenced By:

Finalize Migration Plan
Migration Planning Process

Evaluation Criteria:

1) Test: [BP1836.1]

Does the migration plan identify key stakeholders?

Procedure:

Examine the migration plan and verify that it identifies key stakeholders.

Example:

None.

2) Test: [BP1836.2]

Does the migration plan reflect key stakeholders' involvement and input?

Procedure:

Examine and analyze the migration plan to confirm that it reflects key stakeholders' involvement and input.

Example:

None.

Part 2: Traceability

Page 501

BP1837

Statement:

Update the net-centric and SOA migration plan in an iterative manner as the program gains migration experience
and conditions change.

Rationale:

Most large-scale net-centric and SOA migrations are expected to be lengthy and subject to many influencing
and changing factors. As a result, they should be implemented in phases. Small-scale migrations may be able to
execute the bulk of the migration in a single increment, but the migration plan should still be revisited for potential
updates over time. Specifically, use the same methodology for creating updates to the plan as for creating the
initial baseline version.

Referenced By:

Migration Planning Process
Design Tenet: Joint Net-Centric Capabilities
Finalize Migration Plan

Evaluation Criteria:

1) Test: [BP1837.1]

Does the migration plan track its currency date and any updates?

Procedure:

Examine the migration plan for a currency date and update tracking.

Example:

None.

Part 2: Traceability

Page 502

BP1840

Statement:

Identify opportunities to apply the principles of net-centricity and SOA throughout the course of the program.

Rationale:

All of the program's modernization activities have the potential to include opportunities to migrate to net-centricity
and SOA. Even requirements that on the surface appear to not relate to net-centricity or SOA may contain a net-
centric or SOA aspect. Coordinate with both user and developer personnel to identify these opportunities and the
associated risks. Be careful to not overstate the requirements.

Referenced By:

Design Tenet: Joint Net-Centric Capabilities
Assess As-Is Requirements

Evaluation Criteria:

1) Test: [BP1840.1]

Does the program's migration plan describe an approach for identifying opportunities to apply net-centric and SOA
principles throughout the course of the program?

Procedure:

Verify that the migration planning documentation contains a description of an approach for identifying net-centric and
SOA migration opportunities.

Example:

None.

2) Test: [BP1840.2]

Does the program's migration plan contain an analysis of opportunities to apply net-centric and SOA principles
throughout the course of the program?

Procedure:

Review the program's migration planning documentation and verify that it contains an analysis of opportunities of
opportunities to apply net-centric and SOA principles throughout the course of the program.

Example:

None.

Part 2: Traceability

Page 503

BP1842

Statement:

Formally document the migration rationale to support the migration to net-centricity and SOA.

Rationale:

A clearly documented rationale presents the business case for the migration to all stakeholders.

Referenced By:

Develop Migration Rationale Statement

Evaluation Criteria:

1) Test: [BP1842.1]

Does the program have a migration rationale statement to support the migration to net-centricity and SOA?

Procedure:

Review migration planning documents to verify they include a migration rationale statement.

Example:

None.

2) Test: [BP1842.2]

Does the Migration Plan include a formally documented migration rationale?

Procedure:

Review the Migration Plan to verify it includes a migration rationale.

Example:

None.

Part 2: Traceability

Page 504

BP1843

Statement:

Obtain consensus among all key stakeholders on the rationale for the migration to net-centricity and SOA.

Rationale:

The stakeholders present varying viewpoints about issues associated with the migration. Involving them early on in
the migration planning process provides key input and potential advocacy.

Referenced By:

Develop Migration Rationale Statement

Evaluation Criteria:

1) Test: [BP1843.1]

Does the Migration Rationale statement explicitly demonstrate the consensus on the rationale for the migration to net-
centricity and SOA among all of the key stakeholders?

Procedure:

Review the Migration Rationale statement and verify that it demonstrates all key stakeholders consensus.

Example:

None.

Part 2: Traceability

Page 505

BP1844

Statement:

Develop a vision statement for the migration to net-centricity and SOA.

Rationale:

A vision statement provides strategic direction for the migration. It describes the high-level, time-indeterminate
state of the target of the migration. The vision statement will be documented in the migration plan.

The vision for the program indicates the desired long-term direction for the system. It offers a view of its evolution
and, potentially, eventual replacement. The vision for the program shows the scope of the system within its larger
context (the enterprise); thus, the vision for the program should be consistent with the higher headquarters vision
statements. Similarly, the vision for the migration to net-centricity and SOA should be consistent with the vision for
the program.

Referenced By:

Develop Alternative Target Architectures

Evaluation Criteria:

1) Test: [BP1844.1]

Does the migration plan contain a vision statement for the migration?

Procedure:

Review the migration plan and verify that it contains a migration vision statement.

Example:

None.

Part 2: Traceability

Page 506

BP1845

Statement:

Consider key enterprise-level concerns when planning and executing a migration to net-centricity and SOA.

Rationale:

The complexity of migration planning and execution requires careful consideration of numerous factors. Early and
deliberate consideration of these factors is required to successfully achieve both program and enterprise-level
objectives associated with the migration.

Referenced By:

Develop Implementation Plans
Design Tenet: Network Connectivity
Critical Migration Concerns

Evaluation Criteria:

1) Test: [BP1845.1]

Does the implementation plan for net-centricity and SOA migration contain considerations for key enterprise-level
concerns?

Procedure:

Review the migration plan tasks and verify that they address critical migration concerns.

Example:

None.

Part 2: Traceability

Page 507

BP1846

Statement:

Involve key stakeholders in the development of the implementation plan increments.

Rationale:

The stakeholders present varying viewpoints about issues associated with the migration. Involving them in the
migration planning process provides key input and potential advocacy.

Referenced By:

Develop Implementation Plans

Evaluation Criteria:

1) Test: [BP1846.1]

Does the implementation plan for net-centricity and SOA migration contain considerations of key stakeholders?

Procedure:

Review the migration plan tasks and verify that they address key stakeholders' concerns.

Example:

None.

Part 2: Traceability

Page 508

BP1863

Statement:

Make shareable data assets visible, even if they are not accessible.

Rationale:

Making data visible using a consistent, standardized metadata specification within a Net-Centric Environment
(NCE) facilitates a federated cross-organizational discovery capability [R1172] . A common specification for the
description of information allows for a comprehensive capability that can locate all information across the NCE
regardless of format, type, location, or classification, dependent on user authorization. The DoD Metadata
Specification (DDMS) was developed to support Enterprise-wide data discovery by providing a common set
of descriptive metadata elements. Discovery metadata must conform to the DDMS in accordance with DoD
Directive (DoDD) 8320.2 [R1217] . Information owners tag information with DDMS-compliant metadata to ensure
discoverability of information in the NCE.
The extensible nature of the DDMS supports domain-specific or COI discovery metadata requirements and
extends the element categories identified in the DDMS Core Layer used to describe information. Use of the DDMS
does not preclude use of other metadata processes or standards. For example, record-level database tagging and
in-line document tagging are common practices to support various department objectives. These tagging initiatives
should be enhanced to include the DDMS for enterprise discovery.

Referenced By:

Design Tenet: IPv6
Net-Centric Data Strategy (NCDS)
Design Tenet: Make Data Visible
Design Tenet: Open Architecture
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [BP1863.1]

Does the system provide discovery metadata in accordance with the DoD Discovery Metadata Standard (DDMS) for
all data posted to shared spaces?

Procedure:

Examine the DoD Metadata Registry for program/system.

Example:

Discoverable information has associated DDMS metadata that can be found in the DDMS).

Part 2: Traceability

Page 509

BP1864

Statement:

Layer architectures to support clear boundaries between data management, presentation, and business logic
functionality.

Rationale:

Multitier, or n-tier, architectures are types of client/server architectures that enable an application to be accessed
and executed by one or more software agents or services on the network. An N-tier architecture should be
composed of layers; graphical user interface (GUI), business logic, and data should enable developing and
maintaining each tier separately as technologies change. Separation of each tier may be logical or physical.
Regardless of the physical system design, the structure should include well-defined boundaries between the
different tiers so that changes in the system are transparent to users.
For example, N-tier architectures may employ Web services as a means of separating the presentation layer from
business logic and data layers. The presentation layer serves static content through Web pages. A business logic
layer provides dynamic content using a J2EE application server. Finally, a database provides the underlying
information that must be shared.

Referenced By:

Design Tenet: Packet Switched Infrastructure
Design Tenet: Scalability
Design Tenet: Open Architecture
Design Tenet: Transport Goal
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [BP1864.1]

Does the architecture support clear boundaries between data, presentation, and business logic layers?

Procedure:

Examine the architecture for clear boundaries between data, presentation, and business logic layers.

Example:

The architecture uses Web Services to share information between the presentation and business logic layers.

Part 2: Traceability

Page 510

BP1865

Statement:

Provide sufficient program, project, or initiative metadata descriptions and automated support to enable mediation
and translation of the data between interfaces.

Rationale:

Information exchanges should support known and unanticipated users. The program or project should initiate
sufficient metadata descriptions and provide automated support to enable mediation and translation of data
between interfaces. All of the data that can and should be shared externally beyond the programmatic bounds
of your program should be defined well enough in metadata descriptions and translation of the data between
interfaces should be automated.

Referenced By:

Content Discovery Services
Net-Centric Data Strategy (NCDS)
Design Tenet: Provide Data Management
Design Tenet: Make Data Visible
Net-Centric Information Engineering
Metadata
Coordination of Node and Enterprise Services
Design Tenet: Make Data Interoperable

Evaluation Criteria:

1) Test: [BP1865.1]

Evaluation of interfaces and applicable mediation/translations to access that the program, project, or initiative has
sufficient metadata descriptions and automated support to enable mediation and translation of the data between
interfaces. Data is XML wrapped for exchange and configured to support standard transactions with headers, trailers
and bodies.

Procedure:

Evaluate the degree to which data is XML wrapped for exchange and configured to support standard transactions with
headers, trailers and bodies.

Evaluation of the DoD Metadata Registry entries to assess sufficient metadata descriptions and automated support
the enables mediation and translation of the data between interfaces.

Example:

XML wrapped data are intend for exchange, that is configured in terms of standard transactions with headers, trailers
and bodies.

Part 2: Traceability

Page 511

BP1866

Statement:

Coordinate with end users to develop interoperable materiel in support of high-value mission capability.

Rationale:

System providers acquire the materiel portion of mission capabilities that include all aspects of DOTMLP-F.
An assessment by the community regarding the value of information or services provides useful direction in
support of managing a mission area's portfolio of services. User feedback mechanisms provide a means of
capturing and reporting user satisfaction and give portfolio managers decision-making information to steer
investments, developments, and improvements. As service consumers gain access to information more quickly in
the operational environment, command structures will inevitably change the manner in which IT investments are
made. Service and information providers in a mission area should work together to define the processes for using
the user feedback for service and information improvements because these processes are specific to a portfolio of
capabilities in the Enterprise.

Referenced By:

Design Tenet: Make Data Interoperable
Net-Centric Information Engineering
Design Tenet: Joint Net-Centric Capabilities

Evaluation Criteria:

1) Test: [BP1866.1]

Processes exist that allow a consumer to

1. request changes in the format (syntax or semantic) of the visible data asset;

2. report a problem with a data asset;

3. request additional data from the data provider

Procedure:

Evaluation of the process a consumer would follow to

1. request changes in the format (syntax or semantic) of the visible data asset;

2. report a problem with a data asset;

3. request additional data from the data provider.

Example:

An end-to-end output management strategy, across multiple business sites and/or the enterprise.

A distributed and extensible database which make information accessible to authorized users across the enterprise.

Part 2: Traceability

Page 512

BP1867

Statement:

Use metrics to track responsiveness to user information sharing needs.

Rationale:

Information sharing metrics are defined to measure and track implementation of the net-centric approaches.
Measurement techniques should be developed to ensure that metrics are captured in a useful and consistent
manner. Metrics should be tagged with DDMS-compliant metadata and provided to the NCE to promote
awareness of data management successes and areas requiring improvement.

Referenced By:

Design Tenet: Be Responsive to User Needs
Instrumentation for Metrics

Evaluation Criteria:

1) Test: [BP1867.1]

Does the program, project or initiative have metrics for determining responsiveness to user needs?

Procedure:

Evaluate the metrics being used to determine responsiveness to user data needs. If YES, describe; If NO, explain
and identify a time frame for when the program, project, or initiative will have metrics for determining responsiveness
to user needs; or specify NOT APPLICABLE and explain.

Example:

Examples of data metrics include percentage of Web-enabled components, progress toward service-enabling
identified key functional components, and percentage of tagged community data.

Part 2: Traceability

Page 513

BP1868

Statement:

Incorporate mechanisms to enhance the survivability, resiliency, redundancy, and reliability of Computing
Infrastructure (CI).

Rationale:

Computing Infrastructure (CI) must be survivable, resilient, redundant, and reliable in the presence of attacks,
failures, accidents, and natural or man-made disasters. A robust CI must incorporate survivability, resiliency,
redundancy, and reliability to ensure operational availability in support of information sharing in DoD, as well as
externally with federal agencies, state and local governments, allies, and coalition partners. In the context of the
CI, the measure of reliability is included as a critical element in ensuring high mean time between failures (MTBF).

Survivable: Survivability ensures that CI systems, subsystems, equipment, processes, procedures, or CI-related
doctrine, organization, training, materiel, leadership, personnel, facilities (DOTMLPF) continue to fulfill critical
mission requirements in the presence of attacks, failures, accidents, and natural or man-made disasters.

Resilient: Incorporation of resiliency into CI ensures the ability to automatically recover from, or adjust to, attacks,
failures, or accidents. Fault tolerance is a key example of resilience that measures the ability to respond gracefully
to an unexpected CI system, subsystem, process, or procedure failure.

Redundant: Incorporation of automatic redundancy into the CI ensures that alternative devices are available to
perform the required system functionality if a primary device fails. Redundancy also ensures that system data
remains accessible and corruption free when CI components fail.

Reliable: Reliable OS platforms, other software infrastructure, and hardware components are critical to
ensuring that operators can depend on their ability to support system functions and applications. Bandwidth
conservation mechanisms minimize latency and jitter, as well as the instability that comes from running processors
and networks with high loads. Processing efficiency mechanisms, such as efficient software implementation
techniques, allow applications to meet performance and latency requirements. Typically, reliability is measured
in mean time between user failures (MTBUF). MTBF of CI components is one factor affecting the overall system
MTBF.

A Continuity of Operations Plan (COOP) and disaster recovery planning are also key to ensuring a robust CI.
The DoD Dictionary of Military Terms defines COOP as "the degree or state of being continuous in the conduct of
functions, tasks, or duties necessary to accomplish a military action or mission in carrying out the national military
strategy." It includes the functions and duties of the commander, as well as the supporting functions and duties
performed by the staff and others acting under the authority and direction of the commander.

Referenced By:

Design Tenet: Availability
Design Tenet: Enterprise Service Management

Evaluation Criteria:

1) Test: [BP1868.1]

Does the program or initiative have a Continuity of Operations Plan (COOP) plan?

Procedure:

Verify existence of COOP.

Part 2: Traceability

Page 514

Example:

Continuity of Operations Plans and Disaster Recovery Plans that include preparatory measures, response actions,
and restoration activities planned or taken to ensure continuation of critical functions to maintain effectiveness,
readiness, and survivability.

Technologies that allow, self-correcting mechanisms to be implemented (e.g., automatic recovery without manual
intervention).

Clustering of servers, incorporation of relative addressing schemata (e.g., DNS), site mirroring, and provisioning of
geographically distributed CI functionality are examples of fail-over implementations.

Part 2: Traceability

Page 515

BP1870

Statement:

Conform to DoD-specified data publication methods that are consistent with Global Information Grid (GIG)
enterprise and user technologies per DoD Directive 8101.1. [R1166]

Rationale:

Referenced By:

Design Tenet: IPv6
Design Tenet: Accommodate Heterogeneity

Part 2: Traceability

Page 516

BP1874

Statement:

Develop methods to forward IP datagrams from external networks.

Rationale:

A system should have the ability to act as a transit network for IP datagrams where the origin and/or destination
are external to the system.

Referenced By:

Design Tenet: Make Data Accessible
Design Tenet: Packet Switched Infrastructure

Evaluation Criteria:

1) Test: [BP1874.1]

Does the system have method(s) to accept IP datagrams from external networks that are destined for hosts within the
system?

Procedure:

Identify method(s) used to accept IP datagrams from external networks destined for hosts within the system.

Example:

None.

2) Test: [BP1874.2]

Is the system able to act as a transit network of IP datagrams with an origin and destination that are external to the
system?

Procedure:

Verify that the system can act as a transit network for IP datagrams with an origin and destination that are external to
the system.

Example:

None.

Part 2: Traceability

Page 517

BP1875

Statement:

Describe the process and protocols used to provide concurrent traffic from multiple security domains on a single IP
internetwork.

Rationale:

Transport service users should implement interfaces to (or transition to) a transport infrastructure supporting fully
converged IP traffic (voice, video, data, and imagery) using DoD-adopted standards (see DISR for appropriate
standards). Transport service providers should implement converged nets as a single IP internetwork. DoD
requires multiple security domains to conduct network-centric warfare.

Referenced By:

Design Tenet: Concurrent Transport of Information Flows
Design Tenet: Joint Technical Architecture [now DISR]
Design Tenet: Transport Goal

Evaluation Criteria:

1) Test: [BP1875.1]

What processes and protocols are used to provide convergence of traffic (voice, video and data) from multiple security
domains on a single IP internetwork?

Procedure:

Describe the process (and protocols) used to provide convergence of traffic (voice, video and data from multiple
security domains on a single IP internetwork. Verify that DoD standards and products to support traffic convergence
are utilized.

Example:

NSA-approved multi-level security guard.

Part 2: Traceability

Page 518

BP1876

Statement:

Provide a priority-based differentiated management of quality-of-service for traffic based on class of user,
application, or mission.

Rationale:

The GIG and its components must support both QoS and CoS in accordance with the DoD QoS/CoS Roadmap
and policies. The primary QoS factors that affect end-user experience include availability, throughput, delay/
latency, jitter (variation in delay with time), and bit/packet loss. In addition, all GIG networks should be designed
with the ability to support end-to-end treatment of multiple distinct classes of service prioritization levels. These
prioritization levels require that higher-precedence data flows will be transmitted through the networks with
their required QoS with greater assurance than are lower-precedence data flows. Prioritization must enforce
transmission of higher-precedence data in the network, at best, concurrently with or, at worst, to the detriment of
lower-precedence data flows. In the best case, sufficient resources exist to transmit data of different priorities with
their required quality. Otherwise, higher-priority data must be transmitted at the expense of lower-precedence data,
possibly degrading or even preempting the lower-priority data.This capability, referred to as Class of Service (CoS)
support, corresponds approximately to the notion of Multi-Level Priority and Preemption (MLPP).

Referenced By:

Design Tenet: Transport Goal
Design Tenet: Differentiated Management of Quality-of-Service
Design Tenet: Packet Switched Infrastructure
Design Tenet: Layering and Modularity

Evaluation Criteria:

1) Test: [BP1876.1]

Does the program, project, or initiative support a priority-based differentiated management QoS?

Procedure:

Describe the approach used to provide a priority-based differentiated management of quality-of-service.

Example:

Some applications in the GIG require firm service guarantees, while others operate correctly if they receive services
that are differentiated with respect to one or more performance characteristics.
Differentiated Services or DiffServ aggregates flows into coarse classes and then treats the packets in these classes
differentially. Due to this aggregation, and the resulting absence of a need to consider individual flows beyond the
edges of an internet, DiffServ exhibits good scaling properties. However, in the absence of additional mechanisms,
DiffServ provides only preferential, differentiated levels of service and not guarantees.

Part 2: Traceability

Page 519

BP1877

Statement:

Align end-to-end interoperable management of QoS with external networks.

Rationale:

QoS/CoS Working Group is investigating complete end-to-end QoS frameworks providing both differentiated and
guaranteed QoS. They are developing a DoD roadmap and baseline architecture strawman. The architecture
needs to define transport user and transport provider functions, such as where packets are labeled (application or
router with Service Level Agreement).

Referenced By:

Design Tenet: Packet Switched Infrastructure
Design Tenet: Differentiated Management of Quality-of-Service
Design Tenet: Transport Goal

Evaluation Criteria:

1) Test: [BP1877.1]

Does the program, project, or initiative support end-to-end interoperable management of QoS with external networks?

Procedure:

Describe the approach used to provide a priority-based differentiated management of quality-of-service across
external networks.

Example:

Complete end-to-end QoS frameworks providing both differentiated and guaranteed QoS.

Part 2: Traceability

Page 520

BP1878

Statement:

Quantitative measures of QoS requirements should be supportable.

Rationale:

All GIG networks should be provisioned according to SLAs to provide QoS that meets or exceeds that required by
networked applications for the transport of voice, data, video, imagery, and any other demands. The primary QoS
factors that affect end-user experience include availability, throughput, delay/latency, jitter (variation in delay with
time), and bit/packet loss.

Referenced By:

Design Tenet: Packet Switched Infrastructure
Design Tenet: Differentiated Management of Quality-of-Service
Design Tenet: Transport Goal

Evaluation Criteria:

1) Test: [BP1878.1]

What measures of quantitative QoS requirements are supportable, for example jitter, latency, throughput, packet loss,
and others, under specific workloads?

Procedure:

Identify and describe all the QoS measurement criteria that the program, project or initiative will measure.

Example:

Jitter, latency, throughput, packet loss, etc.

Part 2: Traceability

Page 521

BP1879

Statement:

The program, project or initiative should align with the DoD Qos/CoS Working Group Roadmap.

Rationale:

Various approaches are being explored, with none yet adopted. DoD QoS/CoS Working Group is investigating
complete end-to-end QoS frameworks providing both differentiated and guaranteed QoS. They are developing a
DoD roadmap and baseline architecture strawman. The architecture needs to define transport user and transport
provider functions, such as where packets are labeled (application or router with Service Level Agreement).

Referenced By:

Design Tenet: Packet Switched Infrastructure
Design Tenet: Differentiated Management of Quality-of-Service
Design Tenet: Transport Goal
Design Tenet: Concurrent Transport of Information Flows

Evaluation Criteria:

1) Test: [BP1879.1]

Is the program, project, or initiative aligned with the DoD QoS/CoS Working Group roadmap?

Procedure:

Describe your program's alignment with the DoD QoS/CoS working group roadmap.

Example:

None.

Part 2: Traceability

Page 522

BP1880

Statement:

Justify, document, and obtain a waiver for all radio terminal acquisitions that are not JTRS/SCA compliant.

Rationale:

Tactical communications programs should focus on attaining the end objective of providing a family of software-
programmable radios that will greatly enhance warfighters' wireless communication capabilities, while decreasing
cost of ownership for infrastructure. The Joint Tactical Radio System (JTRS) will provide critical communications
capabilities for the tactical wireless tails of the GIG. JTRS and its software communications architecture (SCA)
continue to evolve and have become a cornerstone of the provision of future net-centric capabilities.

Referenced By:

Design Tenet: Joint Net-Centric Capabilities
Design Tenet: Concurrent Transport of Information Flows
Software Communication Architecture
Design Tenet: Employment of Wireless Technologies

Evaluation Criteria:

1) Test: [BP1880.1]

Are all of the program's, project's, or initiative's radio acquisitions JTRS/SCA compliant?

Procedure:

Describe all radio acquisitions that are not JTRS/SCA compliant.

Example:

None.

Part 2: Traceability

Page 523

Glossary

.NET To address the confusing maze of computer languages,
libraries, tools, and toolkits that were necessary for creating
multi-tier applications, Microsoft developed the .NET
Framework and integrated it into Microsoft Windows as
a component. It supports building and running multi-tier
and service-oriented architectures, including Web services
and client and server applications. It simplifies the process
of designing, developing, and testing software, allowing
individual developers to focus on core, application-specific
code.

Active Server Page ASP A script that is executed by Microsoft Internet Information
Services. The output is returned to the user as HTML.
Typically, an ASP script generates a customized Web page
on the fly before sending it to the user. ASPs are specific
to Microsoft, only run on IIS or PWS, can contain HTML,
JScript, and VBScript, and can access COM components.

ActiveX An ActiveX control is similar to a Java applet. However,
ActiveX controls have full access to the Windows OS.
This gives them much more power than Java applets, plus
a risk that the applet may damage software or data on
your machine. To control this risk, Microsoft developed
a registration system so that browsers can identify and
authenticate an ActiveX control before downloading it.
Another difference between Java applets and ActiveX controls
is that Java applets can be written to run on all platforms,
whereas ActiveX controls are currently limited to Windows
environments.

Adapter An intermediary that translates between incompatible
components interfaces, allowing them to communicate.

All Views AV The DoDAF All-Views (AV) products provide information
pertinent to the entire architecture but do not represent a
distinct view of the architecture. AV products set the scope
and context of the architecture. The scope includes the
subject area and timeframe for the architecture. The setting
in which the architecture exists comprises the interrelated
conditions that compose the context for the architecture.
These conditions include doctrine; tactics, techniques, and
procedures; relevant goals and vision statements; concepts of
operations; scenarios; and environmental conditions. (Source:
DoDAF v1.5 Volume 1: Definintions and Guidelines, 23 April
2007)

American National Standards
Institute

ANSI Administrator and coordinator of the United States private-
sector voluntary standardization system. ANSI facilitates
the development of American National Standards (ANS)
by accrediting the procedures of standards-developing
organizations. The Institute remains a private, nonprofit
membership organization supported by a diverse constituency

http://jitc.fhu.disa.mil/jitc_dri/pdfs/dodaf_v1v1.pdf

Part 2: Traceability

Page 524

of private and public sector organizations. (Source: http://
web.ansi.org/)

Applet A J2EE component that typically executes in a Web browser.
Applets can also execute in a variety of other applications
or devices that support the applet programming model.
(Source: J2EE 1.4 Glossary, http://java.sun.com/j2ee/1.4/
docs/glossary.html)

Application Provides the resources necessary to provision, operate
and maintain Net-Centric Enterprise Services (NCES)
capabilities.

Application Programming
Interface

API A special type of interface that specifies the calling
conventions with which one component may access the
resources and services provided by another component.
APIs are defined by sets of procedures or function-invocation
specifications. An API is a special case of an interface.

Application Server A platform for developing and deploying multi-tier distributed
enterprise applications.

Assistant Secretary of
Defense for Networks and
Information Integration

ASD (NII) (Source: http://www.dod.mil/nii/)

Asymmetric Key
Cryptography

Synonym for Public Key Cryptography.

Authorization The process by which access to a method or resource is
determined. Authorization depends on the determination
of whether the principal associated with a request through
authentication is in a given security role. A security role
is a logical grouping of users defined by the person who
assembles the application. A deployer maps security roles
to security identities. Security identities may be principals or
groups in the operational environment. (Source: J2EE 1.4
Glossary, http://java.sun.com/j2ee/1.4/docs/glossary.html)

Basic Object Adapter BOA The Basic Object Adapter was an early (v1) CORBA
component; see the Portable Object Adapter (POA).

Business Logic The code that implements the functionality of an application.
In the Enterprise JavaBeans architecture, this logic is
implemented by the methods of an enterprise bean. (Source:
J2EE 1.4 Glossary, http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Capability Development
Document

CDD Provides operational performance attributes, including
supportability, for the acquisition community to design the
proposed system. Includes key performance parameters
(KPP) and other parameters that guide the development,
demonstration, and testing of the current increment. Outlines
the overall strategy for developing full capability. (Source:
http://www.dau.mil/pubs/glossary/12th_Glossary_2005.pdf)

Capability Production
Document

CPD Addresses the production attributes and quantities
specific to a single increment of an acquisition program.

http://web.ansi.org/
http://web.ansi.org/
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.dod.mil/nii/
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.dau.mil/pubs/glossary/12th_Glossary_2005.pdf

Part 2: Traceability

Page 525

Supersedes threshold and objective performance
values of the CDD. (Source: http://www.dau.mil/pubs/
glossary/12th_Glossary_2005.pdf)

Cascading Style Sheet CSS Cascading Style Sheets (CSS) is a simple mechanism for
adding style (e.g., fonts, colors, spacing) to Web documents.
(Source: http://www.w3.org/Style/CSS/)

Certificate CERT A certificate which uses a digital signature to bind together a
public key with an identity information such as the name of
a person or an organization, their address, and so forth. The
certificate can be used to verify that a public key belongs to
an individual. (Source: http://en.wikipedia.org/wiki/Certificate_
%28cryptography%29)

Certificate Authority CA A trusted organization which issues digital public key
certificates for use by other parties. It is an example of a
trusted third party. CAs are characteristic of many public key
infrastructure (PKI) schemes. (Source: http://en.wikipedia.org/
wiki/Certificate_authority)

Certificate Revocation List CRL A list of certificates (more accurately, their serial numbers)
which have been revoked, are no longer valid, and should
not be relied upon by any system user. (Source: http://
en.wikipedia.org/wiki/Certificate_Revocation_List)

Check Constraint A constraint based on a user-defined condition - generally
documented in a database domain - that has to evaluate to
true for the contents of a data base column to be valid.

Client A system entity that accesses a Web service. (Source:
http://www.oasis-open.org/committees/download.php/3343/
oasis-200304-wsrp-specification-1.0.pdf)

Client-Certificate
Authentication

An authentication mechanism that uses HTTP over SSL,
in which the server and (optionally) the client authenticate
each other with a public key certificate that conforms to a
standard that is defined by X.509 Public Key Infrastructure.
(Source: J2EE 1.4 Glossary, http://java.sun.com/j2ee/1.4/
docs/glossary.html)

Collaboration Portal members can communicate synchronously through
chat or messaging, or asynchronously through threaded
discussion, blogs, and email digests (forums).

Command, Control,
Communications,
Computers, and Intelligence,
Surveillance, and
Reconnaissance

C4ISR

Command and Control C2 (DoD) The exercise of authority and direction by a properly
designated commander over assigned and attached forces
in the accomplishment of the mission. Command and
control functions are performed through an arrangement
of personnel, equipment, communications, facilities, and
procedures employed by a commander in planning, directing,
coordinating, and controlling forces and operations in the

http://www.dau.mil/pubs/glossary/12th_Glossary_2005.pdf
http://www.dau.mil/pubs/glossary/12th_Glossary_2005.pdf
http://www.w3.org/Style/CSS/
http://en.wikipedia.org/wiki/Certificate_%28cryptography%29
http://en.wikipedia.org/wiki/Certificate_%28cryptography%29
http://en.wikipedia.org/wiki/Certificate_authority
http://en.wikipedia.org/wiki/Certificate_authority
http://en.wikipedia.org/wiki/Certificate_Revocation_List
http://en.wikipedia.org/wiki/Certificate_Revocation_List
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Part 2: Traceability

Page 526

accomplishment of the mission. (Source: http://www.dtic.mil/
doctrine/jel/doddict/data/c/01093.htm)

Command and Control
Information Exchange Data
Model

C2IEDM A data model that is managed by the Multilateral
Interoperability Programme (MIP). It originated with experts
from various NATO partners and from the Partnership-for-
Peace nations. This data model is in the process of being
submitted to OMG for consideration as the standard for
information exchange. It falls under the shared operational
picture exchange service. (Source: http://www.mip-site.org/
MIP_DMWG.htm)

Commercial Off-The-Shelf COTS A term for systems that are manufactured commercially,
and may be tailored for specific uses. (Source: http://
en.wikipedia.org/wiki/Commercial_off-the-shelf)

Common Access Card CAC A DoD-wide smart card used as the identification card
for active duty Uniformed Services personnel (to include
the Selected Reserve), DoD civilian employees, eligible
contractor personnel, and eligible foreign nationals; the
primary platform for the Public Key Infrastructure (PKI)
authentication token used to access DoD computer networks
and systems in the unclassified environment and, where
authorized by governing security directives, the classified
environment; and the principal card enabling physical access
to buildings, facilities, installations, and controlled spaces as
described in DoD Directive 8190.3, "Smart Card Technology,"
31 August 2002. (Source: DoD Instruction 8520.2, 1 April
2004, [R1206] Enclosure (2) Definitions, page 13)

Common Gateway Interface
Script

CGI Script CGI is a standard for interfacing external applications with
information servers, such as HTTP or Web servers. A
plain HTML document that the Web daemon retrieves is
static, which means it exists in a constant state: a text file
that doesn't change. A CGI program, on the other hand, is
executed in real time, so it can output dynamic information.

Common Language Runtime CLR CLR, at the very core of the .NET Framework, encapsulates
all the services used from the operating system by compilers
of higher level languages such as Visual Basic .NET, Visual
C++ .NET, Visual J# .NET and Visual C# .NET. The higher
level languages ultimately are translated into native code that
directly accesses the CLR.

Common Object Request
Broker Architecture

CORBA CORBA "wraps" code written in another language into a
bundle containing additional information on the capabilities
of the code inside, and explaining how to call it. The resulting
wrapped objects can then be called from other programs (or
CORBA objects) over the network. The CORBA specification
defines APIs, communication protocol, and object/service
information models to enable heterogeneous applications
written in various languages running on various platforms to
interoperate. (Source: http://en.wikipedia.org/wiki/CORBA)

Community of Interest COI A COI is a collaborative group of users that must exchange
information in pursuit of its shared goals, interests, missions,
or business processes nd therefore must have shared
vocabulary for the information it exchanges. (Source: DoDD

http://www.dtic.mil/doctrine/jel/doddict/data/c/01093.html
http://www.dtic.mil/doctrine/jel/doddict/data/c/01093.html
http://www.mip-site.org/MIP_DMWG.htm
http://www.mip-site.org/MIP_DMWG.htm
http://en.wikipedia.org/wiki/Commercial_off-the-shelf
http://en.wikipedia.org/wiki/Commercial_off-the-shelf
http://www.dtic.mil/whs/directives/corres/html/852002.htm
http://en.wikipedia.org/wiki/CORBA
http://www.dtic.mil/whs/directives/corres/pdf/832002p.pdf

Part 2: Traceability

Page 527

8320.02, 2 December 2004, Data Sharing in a Net-Centric
Department of Defense)

Community of Interest
Service

A service that may be offered to the enterprise, but is owned
and operated by a Community of Interest to provide or
support a well-defined set of mission functions and associated
information.

Compiler A computer program that translates programs expressed in a
high-order language into their machine language equivalent.
(Source: IEEE Std 610.12-1990)

Complex Data Complex data can be represented in a complex data structure
or can be mapped into a relational or flat structure with
additional metadata provided to represent the complex
relationships.

Component One of the parts that make up a system. A component may
be hardware or software and may be subdivided into other
components. Note the terms module, component, and unit
are often used interchangeably or defined to be sub-elements
of one another in different ways depending on the context.
The relationship of these terms is not yet standardized.
(Source: IEEE Std 610.12-1990)

Note: See system component and software
component.

Component Object Model COM A Microsoft software architecture for building component-
based applications. COM objects are discrete components,
each with a unique identity, which expose interfaces that
allow applications and other components to access their
features. COM objects are more versatile than Win32 DLLs
because they are completely language-independent, have
built-in inter-process communications capability, and easily
fit into an object-oriented program design. COM was first
released in 1993 with OLE2, largely to replace the inter-
process communication mechanism DDE used by the initial
release of OLE. ActiveX is based on COM.

http://www.dtic.mil/whs/directives/corres/pdf/832002p.pdf

Part 2: Traceability

Page 528

Conceptual Model Captures the concepts of the relational database and can help
enforce the first three normalization rules.

Condition A variable of the operational environment or situation in which
a unit, system, or individual is expected to operate that may
affect performance.

A DDS Condition is attached to a WaitSet and
indicates which condition the application is waiting for
asynchronously: StatusCondition, ReadCondition or
QueryCondition.

Consumer A system entity invoking producers in a manner conforming
to a specification. For example, a portal aggregating content
from portlets accessed using the WSRP protocol is a type of
consumer. (Source: http://www.oasis-open.org/committees/
download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

Container A standard extension mechanism for containers that provides
connectivity to enterprise information systems. A connector
is specific to an enterprise information system. It consists of
a resource adapter and application development tools for
enterprise information system connectivity. The resource
adapter is plugged in to a container through its support for
system-level contracts defined in the Connector architecture.
(Source: J2EE 1.4 Glossary, http://java.sun.com/j2ee/1.4/
docs/glossary.html)

Content Discovery Service CDS Net-Centric Enterprise Services (NCES) service that
provided a Federated Search capability.

Core Enterprise Services CES Ubiquitous, common solution services that provide
capabilities essential to the operation of the enterprise.
Generic information services that apply to any COI, provide
the basic ability to search the enterprise for desired
information, and then establish a connection to the desired
service. (Source: http://www.defenselink.mil/nii/org/cio/doc/
GIG_ES_Core_Enterprise_Services_Strategy_V1-1a.pdf)

Credentials The information describing the security attributes of a
principal. (Source: J2EE 1.4 Glossary, http://java.sun.com/
j2ee/1.4/docs/glossary.html)

CRL Distribution Point CDP The location where the Certificate Authroity (CA) puts
the Certificate Revocation List (CRL) for relying parties to
obtain the most current CRL.

Database Management
System

DBMS A system, usually automated and computerized, for managing
any collection of compatible, and ideally normalized, data.
(Source: http://en.wikipedia.org/wiki/DBMS)

http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.defenselink.mil/nii/org/cio/doc/GIG_ES_Core_Enterprise_Services_Strategy_V1-1a.pdf
http://www.defenselink.mil/nii/org/cio/doc/GIG_ES_Core_Enterprise_Services_Strategy_V1-1a.pdf
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/DBMS

Part 2: Traceability

Page 529

Data-Centric An approach for the design and implementation of systems,
applications, services or software that emphasis the data
rather than the operations. It implies that the data is physically
separated from the code and consequently can be maintained
independently (loose coupling between code and data).

Data-Centric Publish-
Subscribe

DCPS The Data-Centric Publish-Subscribe is a lower level layer of
the DDS infrastructure that is targeted towards the efficient
delivery of the proper information to the proper recipients.

Data Dictionary A data dictionary is set of metadata that contains definitions
and representations of data elements.

Within the context of a DBMS, a data dictionary is a read-
only set of tables and views. The data dictionary may be
considered a database in its own right.

Data Distribution Service for
Real-Time Systems

DDS DDS is a recently-adopted OMG standard that is the first open
international middleware standard directly addressing publish-
subscribe communications for real-time and embedded
systems. DDS introduces a virtual Global Data Space where
applications can share information by simply reading and
writing data-objects addressed by means of an application-
defined name (Topic) and a key. DDS features fine and
extensive control of QoS parameters, including reliability,
bandwidth, delivery deadlines, and resource limits. DDS also
supports the construction of local object models on top of the
Global Data Space. (Source: OMG Data Distribution Portal,
http://portals.omg.org/dds)

http://portals.omg.org/dds

Part 2: Traceability

Page 530

Data Element A data element is an atomic unit of data that has the following:

• an identification such as a data element name

• a clear data element definition

• one or more representation terms

• optional enumerated values

Data Element Gallery The Data Element Gallery is an important component of the
Metadata Registry and Clearinghouse. The Data Element
Gallery provides its users with access to data elements that
are commonly used by the Department of Defense such as
country codes and U.S. state codes. Users may search the
registry, compare data elements, and download an Access
database containing the available elements. See the DoD
Metadata Registry, http://metadata.dod.mil.

Data Integrity A measure of the consistency and accuracy of computer data.
Integrity can be threatened by hardware problems, power
outages, and disk crashes, but most often is threatened
by application software or viruses. In a database program,
data integrity can be threatened if two users are allowed to
update the same item or record at the same time. Record or
File Locking, whereby only a single user is allowed access
to a given record at any one point in time is one method of
ensuring data integrity. (Source: http://www.courts.state.ny.us/
ad4/lib/gloss.html#D)

Data Local Reconstruction
Layer

DLRL The Data Local Reconstruction Layer is an optional part of the
DDS specification that provides a higher level layer allowing
for a simpler integration of the DDS into the application layer.

Data Modeling DM Modeling is an essential step in understanding the data that
will comprise a system. The end products of data modeling
can be XML schemas or RDBMS schema definitions. Many
COIs create their own data models, such as C2IEDM for the
C2 community.

http://metadata.dod.mil
http://www.courts.state.ny.us/ad4/lib/gloss.html#D
http://www.courts.state.ny.us/ad4/lib/gloss.html#D

Part 2: Traceability

Page 531

Data Type A data type is a constraint placed upon the interpretation of
data in a type system in computer programming. Common
types of data in programming languages include primitive
types (such as integers, floating point numbers or characters),
tuples, records, algebraic data types, abstract data types,
reference types, classes and function types. A data type
describes representation, interpretation and structure of
values manipulated by algorithms or objects stored in
computer memory or other storage device. The type system
uses data type information to check correctness of computer
programs that access or manipulate the data. (Source: http://
en.wikipedia.org/wiki/Data_type)

DDS DataReader The DDS DataReader acts as a typed (i.e., dedicated to
only one application data type) accessor to a subscriber. The
DataReader class allows the application to declare the data
it wishes to receive (i.e., make a subscription) and access the
data received by the attached Subscriber.

DDS DataWriter A DDS DataWriter acts as a typed (i.e., dedicated to only
one application data type) accessor to a publisher. The
DataWriter class allows the application to set the value of
the data to be published under a given Topic.

DDS DomainParticipant A DDS domain participant represents the local membership of
the computer process in a domain. A domain is a distributed
concept that links all the computer processes able to
communicate with each other. It represents a communication
plane; only the publishers and the subscribers attached to
the same domain may interact. A computer process can run
on the behalf of some user or application.

DDS Global Data Space Underlying any data-centric publish subscribe system is a
data model. In DDS, this model defines the global data space
and specifies how Publishers and Subscribers refer to
portions of this space. (See DDS Domain)

DDS Listener A DDS Listener is used to provide a callback for
synchronous access. Listeners provide a generic mechanism
for the middleware to notify the application of relevant
asynchronous events, such as arrival of data corresponding
to a subscription, violation of a QoS setting, etc. Each DCPS
entity supports its own specialized kind of listener. Listener
operations are invoked using a middleware-provided thread.

DDS Publication A DDS publication is defined by the association of a
DataWriter to a publisher. This association expresses the
intent of the application to publish the data described by the
DataWriter in the context provided by the publisher.

DDS Publisher A DDS publisher is an object responsible for data distribution.
It may publish data of different data types. The DataWriter
is the object the application must use to communicate to a
publisher the existence and value of data-objects of a given
type. When data-object values have been communicated
to the publisher through the appropriate DataWriter, it is
the publisher's responsibility to perform the distribution (the

http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Data_type

Part 2: Traceability

Page 532

publisher will do this according to its own QoS, or the QoS
attached to the corresponding DataWriter).

DDS Subscriber A DDS subscriber is an object responsible for receiving
published data and making it available (according to the
Subscriber's QoS) to the receiving application. It may receive
and dispatch data of different specified types. To access the
received data, the application must use a typed DataReader
attached to the subscriber.

DDS Subscriber Access API DDS defines two APIs that provide subscriber access:
Listeners and the dual Condition/WaitSet infrastructure
allow applications to be notified when changes occur in a
DCPS communication.

DDS Subscription A DDS subscription is defined by the association of a
DataReader with a subscriber. This association expresses
the intent of the application to subscribe the data described by
the DataReader in the context provided by the subscriber.

DDS WaitSet A DDS WaitSet associated with one or several Condition
objects provides asynchronous data access. WaitSets
and their associated Conditions provide the means for
an application thread to block waiting for the same events
that can be received via a Listener. Using a WaitSet the
application can handle the event in its own thread instead of
the middleware provided thread used for Listeners.

Defense Acquisition
University

DAU The mission of the DAU is to provide practitioner training,
career management, and services to enable the DoD
Acquisition, Technology & Logistics (AT&L) community
to make smart business decisions and deliver timely and
affordable capabilities to the warfighter. (Source: http://
www.dau.mil/about-dau/docs/mission_vision.ppt)

Defense Information System
Network

DISN The Defense Information System Network (DISN) has been
the Department of Defense's enterprise network for providing
data, video and voice services for more than 40 years.
(Source: http://www.disa.mil/main/support/dss.html)

Defense Information Systems
Agency

DISA Combat support agency responsible for planning,
engineering, acquiring, fielding, and supporting global
net-centric solutions to serve the needs of the President,
Vice President, the Secretary of Defense, and other DoD
Components, under all conditions of peace and war. (Source:
http://www.disa.mil/main/about/missman.html)

Defense IT Standards
Registry

DISR The DoD IT Standards Registry (DISR) is an online repository
(http://disronline.disa.mil) for a minimal set of primarily
commercial IT standards formerly captured in the Joint
Technical Architecture (JTA), Version 6.0. These standards
are used as the "building codes" for all systems being
procured in the Department of Defense. Use of these
building codes facilitates interoperability among systems
and integration of new systems into the Global Information
Grid (GIG). In addition, the DISR provides the capability to
build profiles of standards that programs will use to deliver

http://www.dau.mil/about-dau/docs/mission_vision.ppt
http://www.dau.mil/about-dau/docs/mission_vision.ppt
http://www.disa.mil/main/support/dss.html
http://www.disa.mil/main/about/missman.html

Part 2: Traceability

Page 533

net-centric capabilities. (Source: http://akss.dau.mil/dag/
GuideBook/IG_c7.2.4.2.asp)

Department of Defense DoD A civilian Cabinet organization of the United States
government. The Department of Defense controls the U.S.
military and is headquartered at The Pentagon. It is headed
by the Secretary of Defense. (Source: http://en.wikipedia.org/
wiki/United_States_Department_of_Defense)

Deployment Descriptor An XML file provided with each module and J2EE application
that describes how they should be deployed. The deployment
descriptor directs a deployment tool to deploy a module or
application with specific container options and describes
specific configuration requirements that a deployer must
resolve. (Source: J2EE 1.4 Glossary, http://java.sun.com/
j2ee/1.4/docs/glossary.html)

Deprecate Deprecation is the gradual phasing-out of features such as
guidance, software or programming language features.

Guidance, features or methods marked as deprecated are
considered obsolete, and further use is discouraged. The
guidance features or methods are still valid although error
messages as warnings may occur when they are referenced.
These serve to alert the user to the fact that the feature may
be removed in future releases.

Features get marked as deprecated, rather than simply
removed, in order to provide backward compatibility end
users.

Digest A cryptographic checksum of an octet stream.

Digital Signature A value computed with a cryptographic algorithm and bound
to data in such a way that intended recipients of the data
can use the signature to verify that the data has not been
altered and/or has originated from the signer of the message,
providing message integrity and authentication. The signature
can be computed and verified with symmetric key algorithms,
where the same key is used for signing and verifying, or with
asymmetric key algorithms, where different keys are used for
signing and verifying (a private and public key pair are used).

Digital Signature Algorithm DSA The Digital Signature Algorithm (DSA) is a United States
Federal Government standard for digital signatures. It
was proposed by the National Institute of Standards and
Technology (NIST) in August 1991 for use in their Digital
Signature Standard (DSS), specified in Federal Information
Processing Standard (FIPS) 186, adopted in 1993. A minor
revision was issued in 1996 as FIPS 186-1, and the standard
was expanded further in 2000 as FIPS 186-2. (Source: http://
en.wikipedia.org/wiki/Digital_Signature_Algorithm)

http://akss.dau.mil/dag/GuideBook/IG_c7.2.4.2.asp
http://akss.dau.mil/dag/GuideBook/IG_c7.2.4.2.asp
http://en.wikipedia.org/wiki/United_States_Department_of_Defense
http://en.wikipedia.org/wiki/United_States_Department_of_Defense
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm

Part 2: Traceability

Page 534

Directory Service A directory service organizes computerized content and
runs on a directory server computer. It is not to be confused
with the directory itself, which is the database that holds the
information about objects that are to be managed by the
directory service. The directory service is the interface to the
directory and provides access to the data that is contained
in that directory. It acts as a central authority that can
securely authenticate resources and manage identities and
relationships between them. (Source: http://en.wikipedia.org/
wiki/Directory_service)

Doctrine, Organization,
Training, Materiel,
Leadership, Personnel,
Facilities

DOTMLPF

Document Object Model DOM An API for accessing and manipulating XML documents as
tree structures. DOM provides platform-neutral, language-
neutral interfaces that enable programs and scripts to
dynamically access and modify content and structure in XML
documents. (Source: J2EE 1.4 Glossary, http://java.sun.com/
j2ee/1.4/docs/glossary.html)

Document Type Definition DTD An optional part of the XML document prolog, as specified by
the XML standard. The DTD specifies constraints on the tags
and tag sequences that can be in the document. The DTD
has a number of shortcomings, however, and this has led
to various schema proposals. (Source: http://java.sun.com/
j2ee/1.4/docs/glossary.html)

DoD Architecture Framework DoDAF Defines a common approach for DoD architecture description,
development, presentation, and integration for both
warfighting operations and business processes [DoDAF
v1.0 supersedes C4ISR Architecture Framework v2.0,
18 December 1997]. (Source: Office of the Secretary of
Defense memo of 9 Feb 2004, The Department of Defense
Architecture Framework (DoDAF))

DoD Discovery Metadata
Specification

DDMS The DoD Discovery Metadata Specification (DDMS) defines
discovery metadata elements for resources posted to
community and organizational shared spaces. (Source: http://
metadata.dod.mil/mdr/irs/DDMS/)

http://en.wikipedia.org/wiki/Directory_service
http://en.wikipedia.org/wiki/Directory_service
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://metadata.dod.mil/mdr/irs/DDMS/
http://metadata.dod.mil/mdr/irs/DDMS/

Part 2: Traceability

Page 535

DoD Metadata Registry As part of the overall DoD Net-Centric Data Strategy, the
DoD CIO established the DoD Metadata Registry (http://
metadata.dod.mil) and a related metadata registration
process for the collection, storage and dissemination of
structural metadata information resources (schemas, data
elements, attributes, document type definitions, style-sheets,
data structures, etc.). This Web-based repository is designed
to also act as a clearinghouse through which industry and
government coordination on metadata technology and related
metadata issues can be advanced. As OASD's Executive
Agent, DISA maintains and operates the DoD Metadata
Registry and Clearinghouse under the direction and
oversight of OASD(NII). (Source: DoD Metadata Registry v6.0
Web site, https://metadata.dod.mil/mdr/about.htm)

DoD Net-Centric Data
Strategy

This Strategy lays the foundation for realizing the benefits
of net-centricity by identifying data goals and approaches
for achieving those goals. To realize the vision for net-
centric data, two primary objectives must be emphasized:
(1) increasing the data that is available to communities
or the Enterprise and (2) ensuring that data is usable by
both anticipated and unanticipated users and applications.
(Source: Department of Defense Net-Centric Data Strategy,
DoD CIO, 9 May 2003, http://www.defenselink.mil/cio-nii/docs/
Net-Centric-Data-Strategy-2003-05-092.pdf)

DoD PKI High Assurance Applications that handle high value unclassified information
(mission critical) in minimally protected environments require
High Assurance certificates. Applications that are applicable
for High Assurance certificates include the following:

• All applications appropriate for DoD PKI Medium
Assurance certificates

• Digital signature services for unclassified Mission
Assurance Category I (MAC I) or national security
information in an unencrypted network

• Protection (authentication and confidentiality) for
information crossing classification boundaries when
such a crossing is already permitted under a system
security policy (e.g., sending unclassified information
through a High Assurance Guard from SIPRNet to
NIPRNet)

(Source: adapted from X.509 Certificate Policy for the
United States Department of Defense, Version 9.0, 9
February 2005; http://iase.disa.mil/pki/dod-cp-v90-final-9-
feb-05-signed.pdf; DoD PKI Certificate required)

Domain A group of related items within a certain area of interest.
In DDS, a domain is the basic construct used to bind
individual publications and subscriptions together
for communication. A distributed application can elect
to use single or multiple domains for its data-centric
communications. Domains isolate communication, promote
scalability and segregate different classifications of data. (See
Global Data Space)

http://metadata.dod.mil
http://metadata.dod.mil
https://metadata.dod.mil/mdr/about.htm
http://www.defenselink.mil/cio-nii/docs/Net-Centric-Data-Strategy-2003-05-092.pdf
http://www.defenselink.mil/cio-nii/docs/Net-Centric-Data-Strategy-2003-05-092.pdf
http://iase.disa.mil/pki/dod-cp-v90-final-9-feb-05-signed.pdf
http://iase.disa.mil/pki/dod-cp-v90-final-9-feb-05-signed.pdf

Part 2: Traceability

Page 536

Domain Analysis The process of identifying the types of information that the
data model uses. A good data model captures descriptive
information about each of the types.

Domain Name System DNS The Domain Name System stores information about
hostnames and domain names in a type of distributed
database on networks, such as the Internet. Of the many
types of information that can be stored, most importantly it
provides a physical location (IP address) for each domain
name, and lists the mail exchange servers accepting email for
each domain.

The DNS provides a vital service on the Internet as it allows
the transmission of technical information in a user-friendly
way. While computers and network hardware work with IP
addresses to perform tasks such as addressing and routing,
humans generally find it easier to work with hostnames and
domain names (such as www.example.com) in URLs and
email addresses. The DNS therefore mediates between the
needs and preferences of humans and of software.

Dual Stacking Incorporating both IPv4 and IPv6 support in routers and
computers.

Dynamic Host Configuration
Protocol

DHCP A protocol for assigning dynamic Internet Protocol (IP)
addresses to devices on a network; DHCP a device can have
a different IP address every time it connects to the network.
(Source: http://www.webopedia.com/TERM/D/DHCP.html)

Encryption Encryption is the process of obscuring information to make
it unreadable without special knowledge. While encryption
has been used to protect communications for centuries, only
organizations and individuals with an extraordinary need
for secrecy have made use of it. In the mid-1970s, strong
encryption emerged from the sole preserve of secretive
government agencies into the public domain, and is now
employed in protecting widely-used systems, such as
Internet e-commerce, mobile telephone networks and bank
automatic teller machines. (Source: http://en.wikipedia.org/
wiki/Encryption)

Endpoint The URL or location of the Web service on the internet.

Enterprise An organization considered as an entity or system
that includes interdependent resources (e.g., people,
organizations, and technology) that must coordinate functions
and share information in support of a common mission or a
set of related missions.

In the computer industry, the term is often used to describe
any large organization that utilizes computers. An intranet,
for example, is a good example of an enterprise computing
system. (Source: http://www.webopedia.com/TERM/e/
enterprise.html)

Enterprise Java Bean EJB A server-side component architecture for the development
and deployment of object-oriented, distributed, enterprise-
level applications. Applications written using the Enterprise
JavaBeans architecture are scalable, transactional,

http://www.webopedia.com/TERM/D/DHCP.html
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Encryption
http://www.webopedia.com/TERM/e/enterprise.html
http://www.webopedia.com/TERM/e/enterprise.html

Part 2: Traceability

Page 537

and secure. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Enterprise Service A service that provides capabilities to the enterprise. See
also Core Enterprise Service and Community of Interest
Service.

Environment Variable Environment variables are a set of dynamic values that can
affect the way running processes will behave. (Source: http://
en.wikipedia.org/wiki/Environment_variable)

eXtensible Access Control
Markup Language

XACML XACML is used to represent and evaluate access control
policies. XACML is designed to standardize the use of
declarative policy to control access to resources. Used with
SAML.

eXtensible Markup Language XML A markup language defines tags (markup) to identify the
content, data, and text in XML documents. It differs from
HTML, the markup language most often used to present
information on the Internet. HTML has fixed tags that deal
mainly with style or presentation. An XML document must
undergo a transformation into a language with style tags
under the control of a style sheet before it can be presented
by a browser or other presentation mechanism. Two types
of style sheets used with XML are CSS and XSL. Typically,
XML is transformed into HTML for presentation. Although
tags can be defined as needed in the generation of an XML
document, you can use a document type definition (DTD) to
define the elements allowed in a particular type of document.
A document can be compared by using the rules in the DTD
to determine its validity and to locate particular elements in
the document. A Web services application's J2EE deployment
descriptors are expressed in XML with schemas defining
allowed elements. Programs for processing XML documents
use SAX or DOM APIs. (Source: http://java.sun.com/j2ee/1.4/
docs/glossary.html)

eXtensible Stylesheet
Language

XSL Extensible Stylesheet Language (XSL) is a family of
recommendations for defining XML document transformation
and presentation. It consists of three parts:

• XSL Transformations (XSLT): a language for
transforming XML

• XML Path Language (XPath): an expression language
used by XSLT to access or refer to parts of an XML
document

• XSL Formatting Objects (XSL-FO): an XML vocabulary
for specifying formatting semantics

(Source: http://www.w3.org/Style/XSL/)

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Environment_variable
http://en.wikipedia.org/wiki/Environment_variable
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.w3.org/Style/XSL/

Part 2: Traceability

Page 538

Facade Provides a unified interface to a set of interfaces in a
subsystem. Facade defines a higher-level interface that
makes the subsystem easier to use. This can simplify a
number of complicated object interactions into a single
interface.

Facade Design Pattern An object that provides a simplified interface to a larger
body of code, such as a class library. (Source: http://
en.wikipedia.org/wiki/Facade_pattern)

Federal Information
Processing Standard

FIPS Under the Information Technology Management Reform Act
(Public Law 104-106), the Secretary of Commerce approves
standards and guidelines that are developed by the National
Institute of Standards and Technology (NIST) for Federal
computer systems. These standards and guidelines are
issued by NIST as Federal Information Processing Standards
(FIPS) for use government-wide. NIST develops FIPS when
there are compelling Federal government requirements
such as for security and interoperability and there are no
acceptable industry standards or solutions. (Source: http://
www.itl.nist.gov/fipspubs/geninfo.htm)

Federated Search Implementation of a computer program that allows users
to access multiple data sources with a single query
string located within a single interface. (Source: http://
en.wikipedia.org/wiki/Federated_search)

File Transfer Protocol FTP FTP transfers files to and from a remote network. The
protocol includes the ftp command (local machine) and
the in.ftpd daemon (remote machine). FTP enables a user
to specify the name of the remote host and file transfer
command options on the local host's command line. The
in.ftpd daemon on the remote host then handles the requests
from the local host. Unlike RCP, FTP works even when the
remote computer does not run a UNIX-based operating
system. A user must log in to the remote computer to
make an FTB connection unless it has been set up to allow
anonymous FTP. (Source: http://www.sun.com/products-n-
solutions/hardware/docs/html/817-6210-10/glossary.html)

Firewall A piece of hardware and/or software which functions in a
networked environment to prevent some communications
forbidden by the security policy, analogous to the function of
firewalls in building construction.

Font Size The font size refers to the size of the font from baseline to
baseline, when set solid (in CSS terms, this is when the
font-size and line-height properties have the same value).
(Source: http://www.w3.org/TR/REC-CSS2/fonts.html)

Foreign Key FK An attribute in a relation of a database that serves as the
primary key of another relation in the same database.

http://en.wikipedia.org/wiki/Facade_pattern
http://en.wikipedia.org/wiki/Facade_pattern
http://www.itl.nist.gov/fipspubs/geninfo.htm
http://www.itl.nist.gov/fipspubs/geninfo.htm
http://en.wikipedia.org/wiki/Federated_search
http://en.wikipedia.org/wiki/Federated_search
http://www.sun.com/products-n-solutions/hardware/docs/html/817-6210-10/glossary.html
http://www.sun.com/products-n-solutions/hardware/docs/html/817-6210-10/glossary.html
http://www.w3.org/TR/REC-CSS2/fonts.html

Part 2: Traceability

Page 539

GIG Enterprise Service A service that provides capabilities for use in the DoD
enterprise. GIG Enterprise Services are the combination of
Core Enterprise Services and Community of Interest Services.
Also referred to as Global Enterprise Services.

Global Command and
Control System

GCCS GCCS-J is the DOD joint C2 system of record for achieving
full spectrum dominance. It enhances information superiority
and supports the operational concepts of full-dimensional
protection and precision engagement. GCCS-J is the principal
foundation for dominant battlespace awareness, providing an
integrated, near real-time picture of the battlespace necessary
to conduct joint and multinational operations. It fuses select
C2 capabilities into a comprehensive, interoperable system
by exchanging imagery, intelligence, status of forces, and
planning information. GCCS-J offers vital connectivity to
the systems the joint warfighter uses to plan, execute, and
manage military operations.

GCCS-J is a Command, Control, Communications, Computer,
and Intelligence (C4I) system, consisting of hardware,
software, procedures, standards, and interfaces that provide a
robust, seamless C2 capability. The system uses the Defense
Information Systems Network (DISN) and must work over
tactical communication systems to ensure connectivity with
deployed forces in the tactical environment. (Source: http://
www.disa.mil/gccs-j/)

Global Information Grid GIG Globally interconnected, end-to-end set of information
capabilities, associated processes, and personnel for
collecting, processing, storing, disseminating, and managing
information on demand to warfighters, policy makers, and
support personnel. The GIG includes all owned and leased
communications and computing systems and services,
software (including applications), data, security services, and
other associated services necessary to achieve Information
Superiority. It also includes National Security Systems (NSS)
as defined in section 5142 of the Clinger-Cohen Act of 1996.
The GIG supports all DoD, National Security, and related
Intelligence Community (IC) missions and functions (strategic,
operational, tactical, and business) in war and in peace.
The GIG provides capabilities from all operating locations
(bases, posts, camps, stations, facilities, mobile platforms,

http://www.disa.mil/gccs-j/
http://www.disa.mil/gccs-j/

Part 2: Traceability

Page 540

and deployed sites). The GIG provides interfaces to coalition,
allied, and non-DoD users and systems.

Global Positioning System A satellite constellation that provides highly accurate
position, velocity, and time navigation information to users.
(Source: JP 1-02, http://www.dtic.mil/doctrine/jel/doddict/data/
g/02300.html)

Graphical User Interface GUI A program that lets the user interact with a computer system
in a highly visual manner, with a minimum of typing. Graphical
user interfaces usually require a high-resolution display and
a pointing device, such as a computer mouse. (Source: http://
www.oreilly.com/catalog/debian/chapter/book/glossary.html)

Hard Code To hard code or hard coding (also, hard-code/hard-coding,
hardcode/hardcoding) refers to the software development
practice of embedding output or configuration data directly
into the source code of a program or other executable object,
or fixed formatting of the data, instead of obtaining that data
from external sources or generating data or formatting in the
program itself with the given input.
Considered an anti-pattern or Bad Thing, hard coding
requires the program's source code to be changed any time
the input data or desired format changes, when it might be
more convenient to the end user to change the detail by some
means outside the program. (Source: http://en.wikipedia.org/
wiki/Hard_code; 12 June 2007)

High Assurance Internet
Protocol Encryption

HAIPE DoD version of Internet Protocol (IP) security (IPsec) protocol.
(Source: http://en.wikipedia.org/wiki/HAIPE)

High Availability Data tier availability can be affected by hardware failure,
power outages, data errors, user errors, programmer
errors, OS errors, and RDBMS errors. Various hardware
and software methods help mitigate availability issues.
The more reliable a system needs to be, the more it costs.
Consequently, defining availability to meet requirements is
essential to controlling costs.

Horizontal Fusion HF Horizontal Fusion (HF) is a direct response to Secretary
of Defense Donald H. Rumsfeld's vision of Force
Transformation. It demonstrates the ability to use lightweight
automation to replace system mass with superior access
to information based on a coherent architecture for an
arbitrary future. Horizontal Fusion acts as a catalyst by
implementing and demonstrating technologies and techniques
that significantly advance the process of information-sharing
in a an evolving net-centric environment. (Source: http://
horizontalfusion.dtic.mil/vision/)

Hypertext Markup Language HTML A markup language for hypertext documents on the Internet.
HTML supports embedding images, sounds, video streams,
form fields, references to other objects with URLs, and basic
text formatting. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Hypertext Transfer Protocol HTTP The Internet protocol used to retrieve hypertext objects from
remote hosts. HTTP messages consist of requests from client

http://www.dtic.mil/doctrine/jel/doddict/data/g/02300.html
http://www.dtic.mil/doctrine/jel/doddict/data/g/02300.html
http://www.oreilly.com/catalog/debian/chapter/book/glossary.html
http://www.oreilly.com/catalog/debian/chapter/book/glossary.html
http://en.wikipedia.org/wiki/Hard_code; 12 June 2007
http://en.wikipedia.org/wiki/Hard_code; 12 June 2007
http://en.wikipedia.org/wiki/HAIPE
http://horizontalfusion.dtic.mil/vision/
http://horizontalfusion.dtic.mil/vision/
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Part 2: Traceability

Page 541

to server and responses from server to client. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Hypertext Transmission
Protocol Over SSL

HTTPS HTTPS is the secure version of HTTP, the communication
protocol of the World Wide Web. It was invented by Netscape
Communications Corporation to provide authentication
and encrypted communication and is used in electronic
commerce.

Instead of using plain text socket communication, HTTPS
encrypts the session data using either a version of the SSL
(Secure Socket Layer) protocol or the TLS (Transport Layer
Security) protocol, thus ensuring reasonable protection from
eavesdroppers, and man in the middle attacks. The default
TCP/IP port of HTTPS is 443. (Source: http://en.wikipedia.org/
wiki/HTTPS)

Identity Identity refers to the nature or attributes of the track: Friend,
Assumed Friend, Neutral, Unknown, Pending, Suspect, or
Hostile.

Image Map An image or graphic that has been coded to contain
interactive areas. When it is clicked on, it launches another
Web page or program. An image map usually has many
different hyperlinked areas, known as links. For example,
an image map of a country could be coded so that when
a user clicks on a city or region, the browser is routed to a
document or Web page about that place. (Source: http://
www.netlingo.com/right.cfm?term=clickable%20graphic%20or
%20imagemap)

Information Assurance IA Measures taken to protect and defend our information and
information systems to ensure Confidentiality, Integrity,
Availability, and Accountability, extended to restoration with
protect, detect, monitor, and react capabilities.

Information Technology IT Any equipment or interconnected system or subsystem
of equipment, that is used in the automatic acquisition,
storage, manipulation, management, movement, control,
display, switching, interchange, transmission, or reception
of data or information. Information technology includes
computers, ancillary equipment, software, firmware, and
similar procedures, services (including support services),
and related resources. Information technology does not
include any equipment that is acquired by a federal contractor
incidental to a federal contract. (Source: CJCSI 6212.01D, 8
March 2006, Glossary page GL-11)

Initial Capabilities Document ICD Documents the need for a materiel approach, or an approach
that is a combination of materiel and non-materiel, to satisfy
specific capability gap(s). It defines the capability gap(s) in
terms of the functional area, the relevant range of military
operations, desired effects, time and doctrine, organization,
training, materiel, leadership and education, personnel, and
facilities (DOTMLPF) and policy implications and constraints.
The ICD summarizes the results of the DOTMLPF and
policy analysis and the DOTMLPF approaches (materiel
and non-materiel) that may deliver the required capability.

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/HTTPS
http://en.wikipedia.org/wiki/HTTPS
http://www.netlingo.com/right.cfm?term=clickable%20graphic%20or%20imagemap
http://www.netlingo.com/right.cfm?term=clickable%20graphic%20or%20imagemap
http://www.netlingo.com/right.cfm?term=clickable%20graphic%20or%20imagemap

Part 2: Traceability

Page 542

The outcome of an ICD could be one or more joint DCRs
or capability development documents. (Source: CJCSI
3170.01E, Joint Capabilities Integration and Development
System, 11 May 2005, Glossary page GL-8)

Integrated Development
Environment

IDE

Interface The functional and physical characteristics required to exist at
a common boundary or connection between systems or items.
(Source: DoD 4120.214-M)

Interface Definition Language IDL A language used to define interfaces to remote CORBA
objects. The interfaces are independent of operating systems
and programming languages. (Source: http://java.sun.com/
javaee/reference/glossary/index.jsp#120354)

International
Telecommunication Union

ITU United Nations agency for information and communication
technologies. (Source: http://www.itu.int/net/about/index.aspx)

Internet The Internet, or simply the Net, is the publicly available
worldwide system of interconnected computer networks
that transmit data by packet switching using a standardized
Internet Protocol (IP) and many other protocols. It is made
up of thousands of smaller commercial, academic, and
government networks. It carries various information and
services, such as electronic mail, online chat and the
interlinked web pages and other documents of the World
Wide Web. Because this is by far the largest, most extensive
internet (with a lower case i) in the world, it is simply called
the Internet (with a capital I). (Source: http://en.wikipedia.org/
wiki/Internet)

Internet Engineering Task
Force

IETF The Internet Engineering Task Force (IETF) is a large open
international community of network designers, operators,
vendors, and researchers concerned with the evolution of
the Internet architecture and the smooth operation of the
Internet. It is open to any interested individual. (Source: http://
www.ietf.org/overview.html)

Internet Information Services IIS A set of Internet-based services for Windows machines.
Originally supplied as part of the Option Pack for Windows
NT, they were subsequently integrated with Windows 2000
and Windows Server 2003. The current (Windows 2003)
version is IIS 6.0 and includes servers for FTP, SMTP, NNTP
and HTTP/HTTPS. Earlier versions also included a Gopher
server.

Internet Protocol IP Data packets routed across network, not switched via
dedicated circuits.

Internet Protocol Version 4 IPv4 Version 4 of the Internet Protocol (IP). It was the first version
of the Internet Protocol to be widely deployed, and forms
the basis for most of the current Internet (as of 2004). It is
described in IETF RFC 791, which was first published in
September, 1981. IPv4 uses 32-bit addresses, limiting it to
4,294,967,296 unique addresses, many of which are reserved
for special purposes such as local networks or multicast

http://java.sun.com/javaee/reference/glossary/index.jsp#120354
http://java.sun.com/javaee/reference/glossary/index.jsp#120354
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Internet
http://www.ietf.org/overview.html
http://www.ietf.org/overview.html

Part 2: Traceability

Page 543

addresses. This reduces the number of addresses that can
be allocated as public Internet addresses. As the number of
addresses available is consumed, an IPv4 address shortage
appears to be inevitable in the long run. This limitation has
helped stimulate the push towards IPv6, which is currently in
the early stages of deployment, and may eventually replace
IPv4. (Source: http://en.wikipedia.org/wiki/IPv4)

Internet Protocol Version 6 IPv6 Version 6 of the Internet Protocol; it was initially called IP Next
Generation (IPng) when it was picked as the winner in the
IETF's IPng selection process. IPv6 is intended to replace
the previous standard, IPv4, which only supports up to about
4 billion (4 x 109) addresses. IPv6 supports up to about 3.4
x 1038 (340 undecillion) addresses. This is the equivalent of
4.3 x 1020 (430 quintillion) addresses per square inch (6.7 x
1017 (670 quadrillion) addresses/mm2)of the Earth's surface.
It is expected that IPv4 will be supported until at least 2025,
to allow time for bugs and system errors to be corrected.
(Source: http://en.wikipedia.org/wiki/Ipv6)

Interoperability The ability of systems, units, or forces to provide data,
information, materiel, and services to and accept the
same from other systems, units, or forces, and to
use the data, information, materiel, and services so
exchanged to enable them to operate effectively together.
IT and NSS interoperability includes both the technical
exchange of information and the end-to-end operational
effectiveness of that exchanged information as required
for mission accomplishment. Interoperability is more
than just information exchange. It includes systems,
processes, procedures, organizations, and missions
over the life cycle and must be balanced with information
assurance. (Source: CJCSI 6212.01D, Interoperability and
Supportability of Information Technology and National
Security Systems, 8 March 2006)

J2EE Server The runtime portion of a J2EE product. A J2EE server
provides EJB or Web containers or both. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Java 2 Platform, Enterprise
Edition

J2EE The J2EE environment is the standard for developing
component-based multi-tier enterprise applications. The
J2EE platform consists of a set of services, application
programming interfaces (APIs), and protocols that provide
the functionality for developing multitiered, Web-based
applications. Features include Web services support and
development tools. Sun Microsystems has simplified the
name of the Java platform for the enterprise; the "2" is
dropped from the name, as well as the dot number so the
next version of the Java platform for the enterprise is Java
Platform, Enterprise Edition 5 or Java EE 5.(Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Java Archive JAR A platform-independent file format that enables you to
bundle multiple files into a single archive file. JAR files are
packaged with the ZIP file format, so you can use them for
ZIP-like tasks such as lossless data compression, archiving,
decompression, and archive unpacking. Typically JAR files

http://en.wikipedia.org/wiki/IPv4
http://en.wikipedia.org/wiki/Ipv6
http://www.dtic.mil/cjcs_directives/cdata/unlimit/6212_01.pdf
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Part 2: Traceability

Page 544

contain the class files and auxiliary resources associated
with applets and applications. (Source: http://java.sun.com/
j2ee/1.4/docs/glossary.html)

Java Database Connection JDBC An API that supports database and data-source access from
Java applications.

Java Development Kit JDK

Javadoc Javadoc is a computer software tool from Sun Microsystems
for generating API documentation into HTML format from
Java source code. Javadoc is the industry standard for
documenting Java classes. Most Integrated Development
Environments (IDEs) will automatically generate Javadoc
HTML. (Source: http://en.wikipedia.org/wiki/Javadoc)

Java Message Service JMS An API for invoking operations on enterprise messaging
systems. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Java Naming and Directory
Interface

JNDI An API that provides naming and directory functionality.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

Java Platform, Enterprise
Edition

Java EE Java Platform, Enterprise Edition (Java EE) is the industry
standard for developing portable, robust, scalable and secure
server-side Java applications. Building on the solid foundation
of the Java Platform, Standard Edition (Java SE), Java EE
provides Web services, component model, management, and
communications APIs that make it the industry standard for
implementing enterprise-class service-oriented architecture
(SOA) and next-generation Web applications.

Sun Microsystems has simplified the name of the Java
platform for the enterprise. Formerly, the platform was known
as Java 2 Platform, Enterprise Edition (J2EE), and specific
versions had "dot numbers" such as J2EE 1.4. The "2" is
dropped from the name, as well as the dot number so the
next version of the Java platform for the enterprise is Java
Platform, Enterprise Edition 5 or Java EE 5. (Source: http://
java.sun.com/javaee/)

JavaScript The Netscape-developed object scripting language used in
millions of web pages and server applications worldwide.
Contrary to popular misconception, JavaScript is not
"Interpretive Java." Rather, it is a dynamic scripting language
that supports prototype-based object construction.

JavaServer Page JSP An extensible Web technology that uses static data, JSP
elements, and server-side Java objects to generate dynamic
content for a client. Typically the static data is HTML or XML
elements, and in many cases the client is a Web browser.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

Joint Capabilities Integration
and Development System

JCIDS Establishes procedures to support the Chairman of the Joint
Chiefs of Staff and the Joint Requirements Oversight Council
(JROC) in identifying, assessing and prioritizing joint military
capability. (Source: CJCSI 3170.01E, 11 May 2005, Joint
Capabilities Integration and Development System)

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Javadoc
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/javaee/
http://java.sun.com/javaee/
http://java.sun.com/j2ee/1.4/docs/glossary.html

Part 2: Traceability

Page 545

Joint Interoperability Test
Command

JITC Independent operational test and evaluation/assessor of
DISA and other DoD Command, Control, Communications,
Computers and Intelligence (C4I) acquisitions. (Source: http://
jitc.fhu.disa.mil/mission.htm)

Joint Tactical Radio System JTRS JTRS is a family of interoperable, affordable software defined
radios at moderate risk which provide secure, wireless
networking communications capabilities for Joint forces.
(Source: JTRS JPEO, http://enterprise.spawar.navy.mil/
body.cfm?type=ccategory=27subcat=60)

Joint Worldwide Intelligence
Communications System

JWICS The sensitive, compartmented information portion of the
Defense Information Systems Network. It incorporates
advanced networking technologies that permit point-to-point
or multipoint information exchange involving voice, text,
graphics, data, and video teleconferencing. (Source: http://
www.dtic.mil/doctrine/jel/doddict/data/j/02972.html)

JScript Microsoft's extended implementation of ECMAScript
(ECMA262), an international standard based on Netscape's
JavaScript and Microsoft's JScript languages. JScript is
implemented as a Windows Script engine. This means that
you can plug it in to any application that supports Windows
Script, such as Internet Explorer, Active Server Pages, and
Windows Script Host. It also means that any application
supporting Windows Script can use multiple languages:
JScript, VBScript, Perl, and others.

Key Interface Profile KIP An operational functionality, systems functionality and
technical specifications description of the Key Interface. The
profile consists of refined Operational and Systems Views,
interface control specifications, Technical View with SV-TV
Bridge, and referenced procedures for KIP compliance. The
key interface profile is the technical specification that governs
access to the GIG. (Source: CJCSI 6212.01D, 8 March 2006,
Glossary page GL-14)

Key Performance
Parameters

KPP Those attributes or characteristics of a system that are
considered critical or essential to the development of
an effective military capability and those attributes that
make a significant contribution to the key characteristics
as defined in the Joint Operations Concepts. KPPs are
validated by the Joint Requirements Oversight Council
(JROC) for JROC Interest documents, and by the DOD
component for Joint Integration or Independent documents.
Capability development and capability production document
KPPs are included verbatim in the acquisition program
baseline. (Source: CJCSI 3170.01E. Joint Capabilities and
Development System, 11 May 2005, Glossary page GL-12)

Key Recovery Manager KRM A service of the DOD PKI where copies of key pairs used
for encryption are stored and can be recovered for law
enforcement purposes.

Note: This definition is derived from the DoD Class
3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

http://jitc.fhu.disa.mil/mission.htm
http://jitc.fhu.disa.mil/mission.htm
http://enterprise.spawar.navy.mil/body.cfm?type=ccategory=27subcat=60
http://enterprise.spawar.navy.mil/body.cfm?type=ccategory=27subcat=60
http://www.dtic.mil/doctrine/jel/doddict/data/j/02972.html
http://www.dtic.mil/doctrine/jel/doddict/data/j/02972.html

Part 2: Traceability

Page 546

Keystore A file containing the keys and certificates used for
authentication. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Land C2 Information
Exchange Data Model

LC2IEDM

Least-Common-Denominator
Data Access Mechanism

When one application is able to obtain data provided by
another by removing arbitrary implementation barriers to data
exchange.

Legacy System An existing computer system or application program
which continues to be used because the user (typically an
organization) does not want to replace or redesign it. (Source:
http://en.wikipedia.org/wiki/Legacy_system)

Light Directory Access
Protocol

LDAP A set of protocols for accessing information directories. LDAP
is a simpler version of the X.500 standard. Unlike X.500, LD
Web Services for Interactive Applications AP supports TCP/
IP, which is necessary for Internet access. Because it's a
simpler version of X.500, LDAP is sometimes called X.500-
lite.

LDAP is a protocol for accessing on-line directory services.
(Source: http://en.wikipedia.org/wiki/LDAP)

Link-16 TADIL-J Tactical Data Information Link (TADIL) primarily designed
for use by Command and Control (C2) and Air-to-Air assets;
uses the Joint Tactical Data Link (TADIL-J) message format.
(Source: http://aatc.aztucs.ang.af.mil/aatcinfo.htm)

Linked Style Sheets Style sheets that are placed in a separate text files and saved
in the root with a css file extension. A link to the file is made in
the head section of the document.

<head><Break/> <link<Break/> rel="stylesheet"<Break/>
href="mystyle.css"<Break/> type="text/css"><Break/></
head><Break/>

Local Area Network LAN A group of interconnected computer and support devices.
(Source: http://www.sun.com/products-n-solutions/hardware/
docs/html/817-6210-10/glossary.html)

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Legacy_system
http://en.wikipedia.org/wiki/LDAP
http://aatc.aztucs.ang.af.mil/aatcinfo.htm
http://www.sun.com/products-n-solutions/hardware/docs/html/817-6210-10/glossary.html
http://www.sun.com/products-n-solutions/hardware/docs/html/817-6210-10/glossary.html

Part 2: Traceability

Page 547

Look and Feel Look and feel refers to design aspects of a graphical user
interface in terms of colors, shapes, layout, typefaces, etc.
(the "look"); and, the behavior of dynamic elements such
as buttons, boxes, and menus (the "feel"). It is used in
reference to both software and Web sites. (Source: http://
en.wikipedia.org/wiki/Look_and_feel)

Loosely Coupled A computing model where application elements require
a simple level of coordination and allow for flexible
reconfiguration. Interconnection is often asynchronous and
message-based.

Mediation A set of negotiated agreements for interacting between
components that enable those components to work together
to perform a task. These agreements are defined through
standard interfaces and data interchange specifications.

Mediation services provide multiple methods for integrating
data sources and services:

Transformation When a client requests data from a service in a
particular format, a transformer retrieves and reformats
the data before returning it to the client

Aggregation A mediator service may collect data derived from
multiple sources, thus making many services appear to
be one

Adaptation When a client cannot communicate directly with a
service, an adapter provides service mediation (can be
transport protocol as well as data format) when services
need to communicate point-to-point

Orchestration Co-ordination of events in a process; orchestration
directs and manages the on-demand assembly of
multiple component services to create a composite
application or business process

Choreography When a client request spawns a chain of events
or service requests that do not rely on a central
coordinator, a Choreographed Web Service knows
when to execute other services and with which other
services to interact; WS-CDL is an example of a
business process management workflow language that
implements choreography

Message A complete unit of data available to be sent or received by
services. It is a self-contained unit of information exchange. A
message always contains a SOAP envelope, and may include
additional MIME parts as specified in MTOM, and/or transport.

Metadata Data about the data, that is, the description of the data
resources, its characteristics, location, usage, and so on.
Metadata is used to identify, describe, and define user data.

Mission The task, together with the purpose, that clearly indicates the
action to be taken and the reason for that action.

Modular Design Characterized by (1) Functional partitioning into discrete
scalable, reusable modules consisting of isolated, self-
contained functional elements; (2) Rigorous use of well-

http://en.wikipedia.org/wiki/Look_and_feel
http://en.wikipedia.org/wiki/Look_and_feel

Part 2: Traceability

Page 548

defined modular interfaces, including object-oriented
descriptions of module functionality; (3) Ease of change to
achieve technology transparency and, to the extent possible,
make use of industry standards for key interfaces.

Module (1) A program unit that is discrete and identifiable with respect
to compiling, combining with other units, and loading; for
example, the input to, or output from, an assembler, compiler,
linkage editor, or executive routine. (2) A logically separable
part of a program. Note: The terms module, component,
and unit are often used interchangeably or defined to be
sub-elements of one another in different ways depending
upon the context. The relationship of these terms is not yet
standardized. See also component. (Source: IEEE Std
610.12-1990)

Multicast The delivery of information to a group of destinations
simultaneously using the most efficient strategy to deliver the
messages over each link of the network only once and only
create copies when the links to the destinations split. (Source:
http://en.wikipedia.org/wiki/Multicast)

Multi-Purpose Internet Mail
Extensions

MIME

MX Record An MX record or Mail exchanger record is a type of resource
record in the Domain Name System (DNS) specifying
how Internet e-mail should be routed. MX records point to
the servers that should receive an e-mail, and their priority
relative to each other. (Source: http://en.wikipedia.org/wiki/
MX_Record)

Namespace A namespace is an abstract container which contains a logical
grouping of unique identifiers (i.e., names). An identifier
defined in a namespace is associated with that namespace.
It is possible to define the same identifier independently
in multiple namespaces. That is, the meaning associated
with an identifier defined in one namespace may or may not
have the same meaning as the same identifier defined in
another namespace. Languages that support namespaces
specify the rules that determine to which namespace an
identifier (i.e., not its definition) belongs. (Adapted from: http://
en.wikipedia.org/wiki/Namespace_%28computer_science
%29; accessed 2/6/2008)

XML namespaces provide a simple method for qualifying
element and attribute names used in Extensible Markup
Language documents by associating them with namespaces
identified by URI references. (Source http://www.w3.org/TR/
REC-xml-names/)

National Security Agency NSA America's cryptologic organization; it coordinates, directs,
and performs highly specialized activities to protect U.S.
government information systems and produce foreign signals
intelligence information. (Source: http://www.nsa.gov/about/
index.cfm)

http://en.wikipedia.org/wiki/Multicast
http://en.wikipedia.org/wiki/MX_Record
http://en.wikipedia.org/wiki/MX_Record
http://en.wikipedia.org/wiki/Namespace_%28computer_science%29
http://en.wikipedia.org/wiki/Namespace_%28computer_science%29
http://en.wikipedia.org/wiki/Namespace_%28computer_science%29
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.nsa.gov/about/index.cfm
http://www.nsa.gov/about/index.cfm

Part 2: Traceability

Page 549

National Security Systems NSS Telecommunications and information systems, operated by
the Department of Defense, the functions, operation, or use
of which involves: (1) intelligence activities; (2) cryptologic
activities related to national security; (3) the command and
control of military forces; (4) equipment that is an integral part
of a weapon or weapons systems; or (5) is critical to the direct
fulfillment of military or intelligence missions. Subsection (5)
in the preceding sentence does not include procurement of
automatic data processing equipment or services to be used
for routine administrative and business applications (including
payroll, finance, logistics, and personnel management
applications). (Source: CJCSI 3170.01F, 1 May 2007, page
GL-16)

Natural Key A Natural Key is a primary keys that is made up completely or
in part from naturally occurring data in the tables.

See Surrogate Key and Primary Key.

Net-Centric Information-based operations that use service-oriented
information processing, networks, and data from the
following perspectives: user functionality (capability
to adaptively perform assigned operational roles with
increasing use of system-provided intelligence/cognitive
processes), interoperability (shared information and loosely
coupled services), and enterprise management (net
operations). (Source: DoD Instruction 4630.8, Procedures for
Interoperability and Supportability of Information Technology
(IT) and National Security Systems (NSS), June 30, 2004
[R1168])

Net-Centric Enterprise
Services

NCES The NCES program provides enterprise-level Information
Technology (IT) services and infrastructure components,
also called Core Enterprise Services, for the Department of
Defense (DoD) Global Information Grid (GIG).

http://www.dtic.mil/cjcs_directives/cdata/unlimit/3170_01.pdf
http://www.dtic.mil/whs/directives/corres/pdf/463008p.pdf

Part 2: Traceability

Page 550

Net-Centric Enterprise
Solutions for Interoperability

NESI A cross service effort between the U.S. Navy Program
Executive Office for Command, Control, Communications,
Computers and Intelligence (PEO C4I), the U.S. Air
Force Electronic Systems Center (ESC) and the Defense
Information Systems Agency (DISA). NESI provides a
reference architecture, implementation guidance, and a set
of reusable software components. These facilitate the design,
development, maintenance, evolution, and use of information
systems for the Net-Centric Operations and Warfare (NCOW)
environment.

Net-Centricity Net-centricity is an information superiority-enabled concept
of operations that generates increased combat power by
networking sensors, decision-makers, and shooters to
achieve shared awareness, increased speed of command,
higher tempo of operations, greater lethality, increased
survivability, and a degree of self-synchronization. In essence,
net-centricity translates information superiority into combat
power by effectively linking knowledgeable entities in the
battlespace. (Source: ASD(NII) Net-Centric Checklist v2.1.3,
12 May 2004)

Net-Centric Operations and
Warfare Reference Model

NCOW RM The NCOW RM describes the activities required to establish,
use, operate, and manage the net-centric enterprise
information environment to include: the generic userinterface,
the intelligent-assistant capabilities, the net-centric service
capabilities (core services, Community of Interest (COI)
services, and environment control services), and the
enterprise management components. It also describes a
selected set of key standards that will be needed as the
NCOW capabilities of the Global Information Grid (GIG)
are realized. The NCOW RM represents the objective end-
state for the GIG. This objective end-state is a service-
oriented, inter-networked, information infrastructure in
which users request and receive services that enable
operational capabilities across the range of military
operations; DoD business operations; and Department-wide
enterprise management operations. The NCOW RM is a
key compliance mechanism for evaluating DoD information
technology capabilities and the Net-Ready Key Performance
Parameter. (Source: CJCSI 6212.01D, 8 March 2006,
Glossary pages GL-17 and GL-18)

Net-Ready Key Performance
Parameter

NR-KPP The NR-KPP assesses information needs, information
timeliness, information assurance, and net-ready attributes
required for both the technical exchange of information and
the end-to-end operational effectiveness of that exchange.
The NR-KPP consists of verifiable performance measures
and associated metrics required to evaluate the timely,
accurate, and complete exchange and use of information to
satisfy information needs for a given capability. The NR-KPP
is comprised of the following elements:

• Compliance with the NCOW RM.

• Compliance with applicable GIG KIPs.

http://www.defenselink.mil/cio-nii/docs/NetCentric_Checklist_v2-1-3_.pdf

Part 2: Traceability

Page 551

• Verification of compliance with DoD information
assurance requirements.

• Supporting integrated architecture products required
to assess information exchange and use for a given
capability.

(Source: DoD Instruction 4630.8, Procedures for
Interoperability and Supportability of Information Technology
(IT) and National Security Systems (NSS), 30 June 2004,
[R1168] Enclosure 2 Section E2.1.51)

Network Operations NetOps An organizational, procedural, and technological construct
for ensuring information and decision superiority at the
strategic, operational, and tactical levels of warfare as
well as within DoD business operations. NetOps is an
operational approach, which addresses the interdependency
and integration of IA/CND, S&NM, and CS capabilities.
NetOps consists of the organizations, tactics, techniques,
procedures, functionalities, and technologies required to plan,
administer, and monitor use of the GIG infrastructure and
the end-to-end information flows of the GIG; and to respond
to threats, outages, and other operational impact. NetOps
ensures mission requirements are properly considered in
GIG operational decision-making. NetOps enables the GIG to
provide its users with information they need, when and where
they need it, with appropriate protection. NetOps is essential
for successful execution of net-centric warfare and other net-
centric operations in support of national security objectives.

Network Time Protocol NTP Protocol for synchronizing the clocks of computer systems
over packet-switched, variable-latency data networks.
NTP uses User Datagram Protocol (UDP) port 123 as its
transport layer. It is designed particularly to resist the effects
of variable latency. (Source: http://en.wikipedia.org/wiki/
Network_Time_Protocol)

http://www.dtic.mil/whs/directives/corres/pdf/463008p.pdf
http://en.wikipedia.org/wiki/Network_Time_Protocol
http://en.wikipedia.org/wiki/Network_Time_Protocol

Part 2: Traceability

Page 552

Node In general network usage, a node is a processing location
such as a computer or some other device. Every node has
a unique network address, sometimes called a Data Link
Control (DLC) address or Media Access Control (MAC)
address. (Source: http://www.webopedia.com/TERM/n/
node.html)

A NESI Node is a collection of integrated components (i.e.,
systems, applications, services and other Nodes) that are
bound together spatially and/or temporally to meet the needs
of a particular mission. It is conceptual in nature and can not
be defined in terms of a concrete set of components or size.
The membership of a component within a particular Node
is not exclusive and a Component can be part of multiple
Nodes.

Nonce A unique random string.

Normalization Normalization avoids duplication of data, insert anomalies,
delete anomalies, and update anomalies. A relation is in
first normal form (1NF) if and only if all underlying simple
domains contain atomic values only. A relation is in second
normal form (2NF) if and only if it is in 1NF and every non-key
attribute is fully dependent on the primary key. A relation is
in third normal form (3NF) if and only if it is in 2NF and every
non-key attribute is non-transitively dependent on the primary
key. Data models should follow the three forms unless there
is overriding justification not to. (Source: http://java.sun.com/
j2ee/1.4/docs/glossary.html)

North Atlantic Treaty
Organization

NATO NATO is an international organization for defense
collaboration established in 1949, in support of the North
Atlantic Treaty signed in Washington, D.C., on April 4, 1949.
Its other official name is the French equivalent, l'Organisation
du Trait de l'Atlantique du Nord (OTAN).

Object Management Group OMG OMGTM is an international, open membership, not-for-
profit computer industry consortium. OMG Task Forces
develop enterprise integration standards for a wide range
of technologies, and an even wider range of industries.
OMG's modeling standards enable powerful visual design,
execution and maintenance of software and other processes.
OMG's middleware standards and profiles are based on the
Common Object Request Broker Architecture (CORBA)
and support a wide variety of industries. (Source: http://
www.omg.org/)

Object-Oriented Analysis OOA OOA (Object Oriented Analysis) constitutes the development
of software engineering requirements and specifications
for a system. These are expressed as an object model
(object oriented design) which is composed of a population of
interacting objects.

Object Request Broker ORB A library that enables CORBA objects to locate and
communicate with one another. (Source: http://java.sun.com/
j2ee/1.4/docs/glossary.html)

http://www.webopedia.com/TERM/n/node.html
http://www.webopedia.com/TERM/n/node.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.omg.org/
http://www.omg.org/
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Part 2: Traceability

Page 553

Online Certificate Status
Protocol

OCSP Online Certificate Status Protocol is a method for determining
the revocation status of an X.509 digital certificate using
means other than CRLs. It is described in RFC 2560 and is
on the Internet standards track.

OCSP messages are encoded in ASN.1 and usually
communicated over HTTP. OCSP's request/response nature
leads to OCSP servers being termed as OCSP responders.

Online Status Check OSC OSC is service that may be provided by the Certificate
Authority (CA). A relying party sends a request to the OSC
service with a certificate, the OSC service responds with a
digitally signed response that includes the date and time,
certificate identification, and the status of the certificate
about whose validity the relying party inquired. The possible
responses include "unknown" which may be the response to a
query regarding an expired certificate.

Note: This definition is derived from the DoD Class
3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Online Status Check
Responder

OSCR OSCR is the server that responds to a relying party's OSC
request.

Open Database Connectivity ODBC In computing, Open Database Connectivity (ODBC)
provides a standard software API method for using database
management systems (DBMS). The designers of ODBC
aimed to make it independent of programming languages,
database systems, and operating systems. (Source: http://
en.wikipedia.org/wiki/Odbc; 30 March 2007)

Open Standard Open standards are publicly available specifications for
achieving a specific task. By allowing anyone to obtain and
implement the standard, they can increase compatibility
between various hardware and software components,
since anyone with the necessary technical know-how
and resources can build products that work together with
those of the other vendors that base their designs on the
standard (although patent holders may impose "reasonable
and non-discriminatory" royalty fees and other licensing
terms on implementers of the standard). Source: http://
en.wikipedia.org/wiki/Open_standard)

Note: NESI restricts the use of the term "standard"
to technologies approved by formalized committees
that are open to participation by all interested parties
and operate on a consensus basis.

Operational View OV The OV is a description of the tasks and activities, operational
elements, and information exchanges required to accomplish
DoD missions. DoD missions include both warfighting
missions and business processes. The OV contains graphical
and textual products that comprise an identification of
the operational nodes and elements, assigned tasks and
activities, and information flows required between nodes. It
defines the types of information exchanged, the frequency

http://en.wikipedia.org/wiki/Odbc
http://en.wikipedia.org/wiki/Odbc
http://en.wikipedia.org/wiki/Open_standard
http://en.wikipedia.org/wiki/Open_standard

Part 2: Traceability

Page 554

of exchange, which tasks and activities are supported by
the information exchanges, and the nature of information
exchanges. (Source: DoDAF v1.5 Volume I: Definitions and
Guidelines, 23 April 2007)

Orchestration Co-ordination of events in a process; orchestration directs and
manages the on-demand assembly of multiple component
services to create a composite application or business
process. (Source: http://looselycoupled.com/glossary/
orchestration)

Note: See Mediation.

Organization for the
Advancement of Structured
Information Standards

OASIS A not-for-profit, international consortium that drives the
development, convergence, and adoption of e-business
standards. (Source: http://www.oasis-open.org/who/)

Personal Web Server PWS A Web server program for personal computer users who
want to share Web pages and other files from their hard
drive. PWS is a scaled-down version of Microsoft's more
robust Web server, Internet Information Server (IIS). PWS
can be used with a full-time Internet connection to serve Web
pages for a Web site with limited traffic. It can also be used
for testing a Web site offline or from a "staging" site before
putting it on a main Web site that is exposed to more traffic.

Physical Model Translates the conceptual model to a particular RDBMS
implementation.

Portability The ease with which a system or component can be
transferred from hardware or software environment to
another. (Source: IEEE Std 610.12-1990) The level of
software portability of any specific product depends on two
factors: the design of the product itself, and the characteristics
of the source and target execution environments. Software
products are rarely if ever 100% portable. Generally, the level
of portability depends on the target platform. Software that is
highly portable to one class of platform might be not portable
to other classes.

Portable Object Adapter POA A CORBA standard for building server-side applications that
are portable across heterogeneous ORBs. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

http://jitc.fhu.disa.mil/jitc_dri/pdfs/dodaf_v1v1.pdf
http://jitc.fhu.disa.mil/jitc_dri/pdfs/dodaf_v1v1.pdf
http://looselycoupled.com/glossary/orchestration
http://looselycoupled.com/glossary/orchestration
http://www.oasis-open.org/who/
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Part 2: Traceability

Page 555

Portal A Web portal is a Web site that provides a starting point,
gateway, or portal to other resources on the Internet or
an intranet. Intranet portals are also known as "enterprise
information portals" (EIP). Examples of existing portals
are Yahoo, Excite, Lycos, Altavista, Infoseek, and Hotbot.
(Source: http://en.wikipedia.org/wiki/web_portal)

Portlet A reusable Web component that displays relevant information
to portal users. Examples for portlets include email, weather,
discussion forums, and news. The purpose of the Web
Services for Remote Portlets (WSRP) interface is to
provide a Web services standard that allows for the "plug-n-
play" of portals, other intermediary Web applications that
aggregate content, and applications from disparate sources.
The portlet specification enables interoperability between
portlets and portals. This specification defines a set of APIs
for portal computing that addresses the areas of aggregation,
personalization, presentation, and security. (Source: http://
en.wikipedia.org/wiki/Portlets)

Primary Key PK An object that uniquely identifies a row within a table.

Private Key The private key is one of a pair of keys that are generated as
part of asymmetric key cryptography. The private key is kept
secret and the public key is public and can be shared openly
with others.

Producer A Web service conforming to the WSRP specification.
(Source: http://www.oasis-open.org/committees/
download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

Proxy A server that sits between a client application, such as a
Web browser, and a real server. It intercepts all requests
to the real server to see if it can fulfill the requests itself. If
not, it forwards the request to the real server.Proxy servers
have two main purposes: improve performance and filter
requests. (Source: http://www.webopedia.com/TERM/p/
proxy_server.html)

Proxy Pattern Provides a surrogate or placeholder for another object to
control access to it.

Public Key PK See Public Key Cryptography.

http://en.wikipedia.org/wiki/web_portal
http://en.wikipedia.org/wiki/Portlets
http://en.wikipedia.org/wiki/Portlets
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.webopedia.com/TERM/p/proxy_server.html
http://www.webopedia.com/TERM/p/proxy_server.html

Part 2: Traceability

Page 556

Public Key Certificate Used in client-certificate authentication to enable the server,
and optionally the client, to authenticate each other. The
public key certificate is the digital equivalent of a passport.
It is issued by a trusted organization, called a certificate
authority, and provides identification for the bearer. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

Public Key Cryptography Public key cryptography, also known as asymmetric
cryptography, is a form of cryptography in which a user has
a pair of cryptographic keys - a public key and a private key.
The private key is kept secret, while the public key may be
widely distributed. The keys are related mathematically,
but the private key cannot be practically derived from the
public key. A message encrypted with the public key can be
decrypted only with the corresponding private key. (Source:
http://en.wikipedia.org/wiki/Public_key)

Public Key Enabling PK-Enabling The incorporation of the use of certificates for security
services such as authentication, confidentiality, data integrity,
and nonrepudiation. PK-Enabling involves replacing existing
or creating new user authentication systems using certificates
instead of other technologies, such as userid and password
or Internet Protocol filtering; implementing public key
technology to digitally sign, in a legally enforceable manner,
transactions and documents; or using public key technology,
generally in conjunction with standard symmetric encryption
technology, to encrypt information at rest and/or in transit.
(Source: DoD Instruction 8520.2, Public Key Infrastructure
(PKI) and Public Key (PK) Enabling, 1 April 2004 [R1206])

Public Key Infrastructure PKI Framework established to issue, maintain, and revoke
public key certificates accommodating a variety of security
technologies, including the use of software. (Source: CNSS
Instruction No. 4009, Revised May 2003, National Information
Assurance (IA) Glossary)

Quality of Service QoS Data timeliness, accuracy, completeness, integrity, and ease
of use. Refers to the probability of the network meeting a
given traffic contract. In many cases is used informally to
refer to the probability of a packet passing between two
points in the network. (Source: http://en.wikipedia.org/wiki/
Quality_of_service) -OR- A defined level of performance that
adapts to the environment in which it is operating. QoS may
be requested by the user of the information. The level of QoS
provided is based on the request, the available capabilities of
the provider, and the priority of the user.

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Public_key
http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Quality_of_service

Part 2: Traceability

Page 557

Real-Time An operation within a larger dynamic system is called a real-
time operation if the combined reaction- and operation-time
of a task is shorter than the maximum delay that is allowed,
in view of circumstances outside the operation. The task
must also occur before the system to be controlled becomes
unstable. A real-time operation is not necessarily fast, as slow
systems can allow slow real-time operations. This applies
for all types of dynamically changing systems. The polar
opposite of a real-time operation is a batch job with interactive
timesharing falling somewhere in-between the two extremes.
(Source: http://en.wikipedia.org/wiki/Real_time)

Reference Data Set The Reference Data Set Gallery [of the DoD Metadata
Registry and Clearinghouse] provides collections
of related data that represent a defined entity within a
community of interest. Examples of reference data sets
include country codes, U.S. state codes, and marital status
codes. (Soure: http://www.disa.mil/nces/development/
developer_doc_overview.html)

Referential Integrity A feature provided by RDBMSs that prevents users or
applications from entering inconsistent data. Most RDBMSs
have various referential integrity rules that you can apply
when you create a relationship between two tables.

Registered Namespace A namespace that has been registered and approved with a
namespace registration services. For the DoD, use the DoD
Metadata Registry.

Registration Web Service RWS Horizontal Fusion (HF) service used by data producers to
register content sources.

Relational Database RDB A collection of data items organized as a set of formally-
described tables from which data can be accessed or
reassembled in many different ways without having to
reorganize the database tables.

Relational Database
Management System

RDBMS A database management system (DBMS) that is based on
the relational model or that presents the data to the user as
relations. A collection of tables, each table consisting of a set
of rows and columns, can satisfy this property. RDBMSs also
provide relational operators to manipulate the data in tabular
form. (Source: http://en.wikipedia.org/wiki/RDBMS)

Relative Font Size Fonts that display according to the size of the surrounding
text. Some designers call them scalable fonts. Instead of
displaying a fixed pixel size, a relative font size displays as
a percentage of the surrounding elements. (Source: http://
www.netmechanic.com/news/vol5/design_no13.htm)

Role-Based Access Control RBAC An approach to restricting system access to authorized users.
It is a newer and alternative approach to discretionary access
control and mandatory access control. It assigns permissions
to specific operations with meaning in the organization, rather
than to low-level data objects. (Source: http://en.wikipedia.org/
wiki/RBAC)

http://en.wikipedia.org/wiki/Real_time
http://www.disa.mil/nces/development/developer_doc_overview.html
http://www.disa.mil/nces/development/developer_doc_overview.html
http://en.wikipedia.org/wiki/RDBMS
http://www.netmechanic.com/news/vol5/design_no13.htm
http://www.netmechanic.com/news/vol5/design_no13.htm
http://en.wikipedia.org/wiki/RBAC
http://en.wikipedia.org/wiki/RBAC

Part 2: Traceability

Page 558

Router A device that forwards data packets along networks. A router
is connected to at least two networks, commonly two local
area networks (LANs) or wide area networks (WANs) or a
LAN and its Internet Service Provider's network. Routers are
located at gateways, the places where two or more networks
connect. (Source: http://www.webopedia.com/TERM/r/
router.html)

SCA Operating Environment OE SCA Operating Environment: The SCA OE describes the
requirements of the operating system, middleware, and the
CF interfaces and operations.

Schema A diagrammatic representation, an outline, or a model. In
relation to data management, a schema can represent any
generic model or structure that deals with the organization,
format, structure, or relationship of data. Some examples of
schemas are (1) a database table and relational structure,
(2) a document type definition (DTD), (3) a data structure
used to pass information between systems, and (4) an XML
schema document (XSD) that represents a data structure
and related information encoded as XML. Schemas typically
do not contain information specific to a particular instance of
data (Source: DoD 8320.02-G, 12 April 2006, Guidance for
Implementing Net-Centric Data Sharing)

Search Web Service SWS Horizontal Fusion (HF) service used to search for content
from registered sources.

Secret Internet Protocol
Router Network

SIPRNet DoD's largest interoperable command and control data
network, supporting the Global Command and Control
System (GCCS), the Defense Message System (DMS),
collaborative planning and numerous other classified
warfighter applications. Direct connection data rates range
from 56 kbps to 155 Mbps for the Unclassified but Sensitive
Internet Protocol Router Network (NIPRNet), and up to
45 Mbps for the SIPRNet. Remote dial-up services are also
available, ranging from 19.2 kbps on SIPRNet to 56 kbps
on NIPRNet. (Source: http://www.disa.mil/main/prodsol/
data.html)

Secure Hash Algorithm SHA The SHA (Secure Hash Algorithm) family is a set of
related cryptographic hash functions. In cryptography, a
cryptographic hash function is a hash function with certain
additional security properties to make it suitable for use as a
primitive in various information security applications, such as
authentication and message integrity. A hash function takes a
long string (or message) of any length as input and produces
a fixed length string as output, sometimes termed a message
digest or a digital fingerprint. (Source: http://en.wikipedia.org/
wiki/SHA#SHA-0_and_SHA-1)

Secure Sockets Layer SSL A protocol for transmitting private documents via the Internet.
SSL uses a cryptographic system employing two keys to
encrypt data: a public key known to everyone and a private
or secret key known only to the recipient of the message.
(Source:http://www.webopedia.com/TERM/S/SSL.html)

http://www.webopedia.com/TERM/r/router.html
http://www.webopedia.com/TERM/r/router.html
http://www.dtic.mil/whs/directives/corres/pdf/832002g.pdf
http://www.disa.mil/main/prodsol/data.html
http://www.disa.mil/main/prodsol/data.html
http://en.wikipedia.org/wiki/SHA#SHA-0_and_SHA-1
http://en.wikipedia.org/wiki/SHA#SHA-0_and_SHA-1
http://www.webopedia.com/TERM/S/SSL.html

Part 2: Traceability

Page 559

Security Assertion Markup
Language

SAML An XML standard for exchanging authentication and
authorization data between security domains; that is, between
an identity provider and a service provider. SAML is a product
of the OASIS Security Services Technical Committee.
(Source:http://en.wikipedia.org/wiki/SAML)

Security Technical
Implementation Guide

STIG Configuration standards for DoD IA and IA-enabled devices/
systems. (Source: http://iase.disa.mil/stigs/index.html)

Serif Font A serif is a feature of the letters in a given typeset. They
appear at the end of lines within the letters. An example would
be the letter T in Times New Roman - at the end of each
horizontal line is a tick that hangs down (that is the serif). Serif
fonts include Times New Roman, Bookman Oldstyle, and
Courier.

Server A computer software application that carries out some task
(i.e., provides a service) on behalf of yet another piece of
software called a client.

Service A service is an autonomous encapsulation of some business
or mission functionality. The service concept includes the
notion of service providers and service consumers interacting
via well-defined reusable interfaces.

Note: See P1304: Service-Oriented Architecture
in Part 1 for additional information concerning
services including implementation characteristics.

Service Access Point SAP SAP provides all of the information necessary for a user to
access and consume a service. Includes the logical and
physical location of the service on the net.

Service Definition Framework SDF SDF provides service users, customers, developers,
providers, and managers with a common frame of reference.
Its structure and methodology enable you to fully define the
Service Access Points (SAPs) for the service.

Service Discovery SD Provides a yellow pages, categorized by DoD function,
enabling users to advertise and locate capabilities available
on the network.

Service Level Agreement SLA A contractual vehicle between a service provider and a
service consumer. It specifies performance requirements,
measures of effectiveness, reporting, cost, and recourse. It
usually defines repair turnaround times for users.

http://en.wikipedia.org/wiki/SAML
http://iase.disa.mil/stigs/index.html
http://nesipublic.spawar.navy.mil/nesix/View/P1304

Part 2: Traceability

Page 560

Service-Oriented Architecture SOA NESI describes SOA as an architectural style used to design,
develop, and deploy information technology (IT) systems
based on decomposing functionality into services with well-
defined interfaces.

Note: See P1304: Service-Oriented Architecture
in Part 1 for additional information.

Service Registry Provides descriptive information about a service, enabling the
lookup and discovery of services.

Servlet A Java program that extends the functionality of a Web
server, generating dynamic content and interacting with
Web applications using a request-response paradigm.
(Source:http://java.sun.com/j2ee/1.4/docs/glossary.html)

Session An interaction between system entities of finite duration,
often involving a user, typified by the maintenance of
some state of the interaction for the duration of the
interaction. (Source:http://www.oasis-open.org/committees/
download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

Simple Mail Transfer Protocol SMTP

Situation Awareness Data
Link

SADL An Enhanced Position Location and Reporting System
(EPLRS) radio modified for use in an aircraft. SADL and
EPLRS radios are used to establish a common secure tactical
data link network. (Source: http://aatc.aztucs.ang.af.mil/
aatcinfo.htm)

SOAP SOAP Version 1.2 is a lightweight protocol intended for
exchanging structured information in a decentralized,
distributed environment. It uses XML technologies to
define an extensible messaging framework providing a
message construct that can be exchanged over a variety of
underlying protocols. The framework has been designed to be
independent of any particular programming model and other
implementation specific semantics. (Source: SOAP Version
1.2 Second Edition, http://www.w3.org/TR/soap12-part1/
#intro)

Note: The World Wide Web Consortium (W3C)
changed the name of this protocol from Simple
Object Access Protocol 1.1 (SOAP) to SOAP
Version 1.2 in the current version.

Software Communications
Architecture

SCA An implementation-independent framework for the
development of software for an established hardware
platform, such as software defined radios.

http://nesipublic.spawar.navy.mil/nesix/View/P1304
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://aatc.aztucs.ang.af.mil/aatcinfo.htm
http://aatc.aztucs.ang.af.mil/aatcinfo.htm
http://www.w3.org/TR/soap12-part1/#intro
http://www.w3.org/TR/soap12-part1/#intro

Part 2: Traceability

Page 561

Software Component A software component is a software system element offering
a predefined service and able to communicate with other
components. It is a unit of independent deployment and
versioning, encapsulated, multiple-use, non-context-specific
and composeable with other components.

Source: http://en.wikipedia.org/wiki/
Software_component#Software_component

Spyware Any software that covertly gathers user information
through the user's Internet connection without the user's
knowledge, usually for advertising purposes. (Source: http://
www.webopedia.com/TERM/s/spyware.html)

Stakeholder An enterprise, organization, or individual having an interest
or a stake in the outcome of the engineering of a system.
(Source: EIA-632, Annex A)

Stored Procedure A unit or module of code that executes in a database and
implement some bit of application logic or business rule. Often
written in proprietary language such as Oracle's PL/SQL or
Sybase's Transact-SQL.

Structured Query Language SQL The standardized relational database language for defining
database objects and manipulating data. (Source:http://
java.sun.com/j2ee/1.4/docs/glossary.html)

http://en.wikipedia.org/wiki/Software_component#Software_component
http://en.wikipedia.org/wiki/Software_component#Software_component
http://www.webopedia.com/TERM/s/spyware.html
http://www.webopedia.com/TERM/s/spyware.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Part 2: Traceability

Page 562

Style Sheet Style sheets describe how documents are presented on
screens, in print, or perhaps how they are pronounced.
(Source: http://www.w3.org/Style)

Surrogate Key A surrogate key is a primary key that has been explicitly
created and has no relationship with the naturally occurring
data found within a table.

See Natural Key and Primary Key.

Sustainment One of the two major efforts (with disposal) of the Operations
and Support phase of a DoD acquisition program.
Sustainment includes supply, maintenance, transportation,
sustaining engineering, data management, configuration
management, manpower, personnel, training, habitability,
survivability, environment, safety (including explosives safety),
occupational health, protection of critical program information,
anti-tamper provisions, and Information Technology (IT),
including National Security Systems (NSS), supportability
and interoperability functions. (Source: DoD Instruction
5000.2, 12 May 2003, Operation of the Defense Acquisition
System, Section 3.9.2)

Symmetric Key Algorithm Encryption algorithm where the same key is used for both
encrypting and decrypting a message.

System Two or more interrelated pieces of equipment (or sets)
arranged in a package to perform an operational function or to
satisfy a requirement. (Source: Defense Acquisition Glossary
of Terms, Jan 2001)

System Component A basic part of a system. System components may be
personnel, hardware, software, facilities, data, material,
services, and/or techniques that satisfy one or more
requirements in the lowest levels of the functional

http://www.w3.org/Style/
http://www.dtic.mil/whs/directives/corres/html/500002.htm
http://www.dtic.mil/whs/directives/corres/html/500002.htm

Part 2: Traceability

Page 563

architecture. System components may be subsystems and/or
configuration items.

Note: See component.

Systems and Services View SV The SV is a set of graphical and textual products that
describes systems and interconnections providing for, or
supporting, DoD functions. DoD functions include both
warfighting and business functions. The SV associates
systems resources to the Operational View (OV). These
systems resources support the operational activities and
facilitate the exchange of information among operational
nodes. (Source: DoDAF v1.5 Volume I: Definitions and
Guidelines, 23 April 2007)

Taxonomy The science of categorization, or classification, of things
based on a predetermined system. In reference to Web sites
and portals, a site's taxonomy is the way it organizes its data
into categories and subcategories, sometimes displayed in
a site map. (Source: http://www.webopedia.com/TERM/t/
taxonomy.html)

Taxonomy Gallery The Taxonomy Gallery [of the DoD Metadata Registry and
Clearinghouse] provides XML-based taxonomy files that
describe one or more nodes in a hierarchical classification of
items, and their relationships to other nodes. The taxonomy
files registered with the Taxonomy Gallery are organized by
governance namespace. (Source: http://www.disa.mil/nces/
development/developer_doc_overview.html)

Technical Standards View TV The TV is the minimal set of rules governing the arrangement,
interaction, and interdependence of system parts or elements.
Its purpose is to ensure that a system satisfies a specified
set of operational requirements. The TV provides the
technical systems implementation guidelines upon which
engineering specifications are based, common building
blocks are established, and product lines are developed.
The TV includes a collection of the technical standards,
implementation conventions, standards options, rules, and
criteria organized into profile(s) that govern systems and
system elements for a given architecture. (Source: DoDAF
v1.5 Volume 1: Definitions and Guidelines, 23 April 2007)

http://jitc.fhu.disa.mil/jitc_dri/pdfs/dodaf_v1v1.pdf
http://jitc.fhu.disa.mil/jitc_dri/pdfs/dodaf_v1v1.pdf
http://www.webopedia.com/TERM/t/taxonomy.html
http://www.webopedia.com/TERM/t/taxonomy.html
http://www.disa.mil/nces/development/developer_doc_overview.html
http://www.disa.mil/nces/development/developer_doc_overview.html
http://jitc.fhu.disa.mil/jitc_dri/pdfs/dodaf_v1v1.pdf

Part 2: Traceability

Page 564

Tenet Net-centric design precept.

Topic Topics are used to manage content flow between publishers
and subscribers. Topics must be known in such a way that
subscribers can refer to them unambiguously.

 In DDS, Topics conceptually fits between publications and
subscriptions and associate a name (unique in the domain),
a data-type, and QoS parameters related to the data.

Transaction A set of input data that triggers execution of a specific
processor job. Usually manipulates data that may need to be
rolled back to the original values if any part of the transaction
fails. Transactions enable multiple users to access the same
data concurrently. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Transmission Control
Protocol

TCP One of the core protocols of the Internet protocol suite.
Using TCP, programs on networked computers can create
connections to one another, over which they can send data.
The protocol guarantees that data sent by one endpoint
will be received in the same order by the other, without
any pieces missing. It also distinguishes data for different
applications (such as a Web server and an email server) on
the same computer. (Source: http://en.wikipedia.org/wiki/
Transmission_Control_Protocol)

Transmission Control
Protocol/Internet Protocol

TCP/IP A suite of communications protocols used to connect hosts
on the Internet. TCP/IP uses several protocols, the two
main ones being TCP and IP. TCP/IP is built into the UNIX
operating system and is used by the Internet, making it the
de facto standard for transmitting data over networks. Even
network operating systems that have their own protocols,
such as Netware, also support TCP/IP.

Transport Layer Security TLS A protocol that guarantees privacy and data integrity between
client/server applications communicating over the Internet.
The TLS protocol is made up of two layers:

• The TLS Record Protocol -- layered on top of a reliable
transport protocol, such as TCP, it ensures that the
connection is private by using symmetric data encryption
and it ensures that the connection is reliable. The TLS
Record Protocol also is used for encapsulation of higher-
level protocols, such as the TLS Handshake Protocol.

• The TLS Handshake Protocol -- allows authentication
between the server and client and the negotiation of an
encryption algorithm and cryptographic keys before the
application protocol transmits or receives any data.

 (Source: http://www.webopedia.com/TERM/T/TLS.html)

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://www.webopedia.com/TERM/T/TLS.html

Part 2: Traceability

Page 565

Trigger In a DBMS, a trigger is a SQL procedure that initiates
(fires) an action when an event (INSERT, DELETE, or
UPDATE) occurs. Since triggers are event-driven specialized
procedures, the DBMS stores and manages them. A trigger
cannot be called or executed; the DBMS automatically fires
the trigger as a result of a data modification to the associated
table. Triggers maintain the referential integrity of data by
changing the data in a systematic fashion.

Triple Data Encryption
Algorithm

TDEA An encryption algorithm whose key consists of three DES
(Data Encryption Standard) keys, which is also referred
to as a key bundle. A DES key consists of 64 binary digits
("0"s or "1"s) of which 56 bits are randomly generated and
used directly by the algorithm. (The other 8 bits, which
are not used by the algorithm, may be used for error
detection.) Each TDEA encryption/decryption operation (as
specified in ANSI X9.52) is a compound operation of DES
encryption and decryption operations. Let EK(I) and DK(I)
represent the DES encryption and decryption of I using
DES key K respectively. (Source: http://www.atis.org/tg2k/
_triple_data_encryption_algorithm.html)

Trusted Guard Accredited to pass information between two networks at
different security levels according to well defined rules and
other controls. Guard products only pass defined types of
information (e.g., email, images, or formatted messages).
A key challenge is how to implement net-centric operations
across trusted guards in the presence of CES services.

Trusted Path A communications path where (1) there is reasonable
confidence that there has not been any malicious alteration
of the information; (2) the data are timely, meaning they
originated within a small preceding period of time.

Trust Point A trust point is a Certificate Authority (CA) that is the root of
all trust for all CAs in a CA hierarchy.

Unclassified but Sensitive
Internet Protocol Router
Network

NIPRNet NIPRNet provides seamless interoperability for unclassified
combat support applications, as well as controlled access to
the Internet. Direct connection data rates range from 56Kbps
to 622Mbps. Remote dial-up services are available up to
56Kbps. (Source: http://www.disa.mil/main/prodsol/data.html)

Unified Modeling Language UML In the field of software engineering, the Unified Modeling
Language (UML) is a standardized specification language
for object modeling. UML is a general-purpose modeling
language that includes a graphical notation used to create
an abstract model of a system, referred to as a UML model.
UML is officially defined at the Object Management Group
(OMG) by the UML metamodel, a Meta-Object Facility
metamodel (MOF). (Source: http://en.wikipedia.org/wiki/
Unified_Modeling_Language; 30 March 2007)

Uniform Resource Locator URL A sequence of characters that represents information
resources on a computer or in a network such as the
Internet. This sequence of characters includes (1) the
abbreviated name of the protocol used to access the
information resource and (2) the information used by the

http://www.atis.org/tg2k/_triple_data_encryption_algorithm.html
http://www.atis.org/tg2k/_triple_data_encryption_algorithm.html
http://www.disa.mil/main/prodsol/data.html
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language

Part 2: Traceability

Page 566

protocol to locate the information resource.(Source: http://
publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/
com.ibm.wsinted.glossary.doc/topics/glossary.html)

UNIQUE Key Integrity
Constraint

A UNIQUE key integrity constraint requires that every value
in a column or set of columns (key) be unique; that is, no two
rows of a table have duplicate values in a specified column or
set of columns. (Source: http://www.lc.leidenuniv.nl/awcourse/
oracle/server.920/a96524/c22integ.htm)

Universal Description,
Discovery, and Integration

UDDI An industry initiative to create a platform-independent, open
framework for describing services, discovering businesses,
and integrating business services using the Internet, as well
as a registry. It is being developed by a vendor consortium.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

User Datagram Protocol UDP A connectionless protocol that, like TCP, runs on top of
Internet Protocol (IP) networks. Unlike Transmission
Control Protocol/Internet Protocol (TCP/IP), UDP/IP
provides very few error recovery services, offering instead
a direct way to send and receive datagrams over an IP
network. It's used primarily for broadcasting messages over
a network. (Source: http://www.webopedia.com/TERM/U/
User_Datagram_Protocol.html)

Valid A valid XML document has data that conforms to a particular
set of user-defined content rules, or XML Schemas, that
describe correct data values and locations. For example,
if an element in a document is required to contain text that
can be interpreted as being an integer numeric value, and it
instead has the text hello, is empty, or has other elements in
its content, then the document is not valid. (Source: adapted
from http://en.wikipedia.org/wiki/XML; 9/11/2006)

VBScript A programming language developed by Microsoft that is
similar to JavaScript. It is used to embed code into HTML
pages. It is actually a subset of Microsoft's Visual Basic.

Vendor Any person, organization, or automated asset that interfaces
with the information environment as a service consumer or
service provider.

Virtual Private Network VPN A network that is constructed by using public wires to connect
nodes. For example, there are a number of systems that
enable the creation of networks using the Internet as the
medium for transporting data. These systems use encryption
and other security mechanisms to ensure that only authorized
users can access the network and that the data cannot be
intercepted. (Source: http://www.webopedia.com/TERM/V/
VPN.html)

http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96524/c22integ.htm
http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96524/c22integ.htm
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.webopedia.com/TERM/U/User_Datagram_Protocol.html
http://www.webopedia.com/TERM/U/User_Datagram_Protocol.html
http://en.wikipedia.org/wiki/XML
http://www.webopedia.com/TERM/V/VPN.html
http://www.webopedia.com/TERM/V/VPN.html

Part 2: Traceability

Page 567

Web Application A collection of components that can be bundled together and
run in multiple containers from multiple vendors. -OR- An
application written for the Internet, including those built with
Java technologies such as Java Server Pages and servlets,
and those built with non-Java technologies such as CGI and
Perl. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

Web Application Archive WAR A JAR archive that contains a Web module. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Part 2: Traceability

Page 568

Web Browser A client program that initiates requests to a Web server and
displays the information that the server returns. (Source:
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?
topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html)

Web Container A container that implements the Web-component contract
of the J2EE architecture. This contract specifies a runtime
environment for Web components that includes security,
concurrency, life-cycle management, transaction, deployment,
and other services. A Web container provides the same
services as a JSP container as well as a federated view of the
J2EE platform APIs. A Web container is provided by a Web
or J2EE server. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Web Module A deployable unit that consists of one or more Web
components, other resources, and a Web application
deployment descriptor. The Web module is contained
in a hierarchy of directories and files in a standard Web
application format. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Web Page A document created with HTML (HyperText Markup
Language) that is part of a group of hypertext documents or
resources available on the World Wide Web. Collectively,
these documents and resources form what is known as
a Web site. You can read HTML documents that reside
somewhere on the Internet or on your local hard drive with
software called a Web browser. Web pages can contain
hypertext links to other places within the same document, to
other documents at the same Web site, or to documents at
other Web sites.

Web Server Software that provides services to access the Internet, an
intranet, or an extranet. A Web server hosts Web sites,
provides support for HTTP and other protocols, and executes
server-side programs (such as CGI scripts or servlets) that
perform certain functions. In the J2EE architecture, a Web
server provides services to a Web container. For example,
a Web container typically relies on a Web server to provide
HTTP message handling. The J2EE architecture assumes
that a Web container is hosted by a Web server from the
same vendor, so it does not specify the contract between
these two entities. A Web server can host one or more Web
containers. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Web Service A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network.
It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.
(Source: http://www.w3.org/TR/ws-gloss/)

Web Services Description
Language

WSDL WSDL is an XML format for describing network services as
a set of endpoints operating on messages containing either

http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.w3.org/TR/ws-gloss/

Part 2: Traceability

Page 569

document-oriented or procedure-oriented information. The
operations and messages are described abstractly, and then
bound to a concrete network protocol and message format to
define an endpoint. (Source: W3C Note on WSDL 1.1 of 15
March 2001 http://www.w3.org/TR/wsdl)

Web Services for Interactive
Applications

WSIA

Web Services for Remote
Portlets

WSRP The WSRP specification defines a Web service interface
for interacting with interactive presentation-oriented Web
services. It has been produced through the joint efforts
of the Web Services for Interactive Applications (WSIA)
and Web Services for Remote Portals (WSRP) OASIS
Technical Committees. Scenarios that motivate WSRP/
WSIA functionality include (1) portal servers providing
portlets as presentation-oriented Web services that can be
used by aggregation engines; (2) portal servers consuming
presentation-oriented Web services provided by portal or non-
portal content providers and integrating them into a portal
framework. (Source: http://www.oasis-open.org/committees/
download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

Web Services Interoperability
Organization

WS-I WS-I is an open industry organization chartered to promote
Web services interoperability across platforms, operating
systems and programming languages. The organization's
diverse community of Web services leaders helps customers
to develop interoperable Web services by providing guidance,
recommended practices and supporting resources. (Source:
http://www.ws-i.org/about/Default.aspx)

Web Site A Web site, website, or WWW site (often shortened to just
"site") is a collection of Web pages (i.e., HTML/XHTML
documents accessible via HTTP on the Internet). All publicly
accessible Web sites in existence comprise the World Wide
Web. The pages of a Web site are accessed from a common
root URL, the homepage, and usually reside on the same
physical server. The URLs of the pages organize them into a
hierarchy, although the hyperlinks between them control how
the reader perceives the overall structure and how the traffic
flows between the different parts of the site. (Source: http://
en.wikipedia.org/wiki/web_site)

Wireless Application Protocol WAP WAP is an open international standard for applications that
use wireless communication, such as Internet access from
a mobile phone. WAP provides services equivalent to a web
browser with some mobile-specific additions. It is specifically
designed to address the limitations of very small portable
devices. During its first years of existence WAP suffered from
considerable negative media attention and has been criticised
heavily for its design choices and limitations. (Source: http://
en.wikipedia.org/wiki/WAP)

Wireless Markup Language WML WML is the primary content format for devices that implement
the WAP (Wireless Application Protocol) specification
based on XML, such as mobile phones. (Source: http://
en.wikipedia.org/wiki/Wireless_Markup_Language)

http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.ws-i.org/about/Default.aspx
http://en.wikipedia.org/wiki/web_site
http://en.wikipedia.org/wiki/web_site
http://en.wikipedia.org/wiki/WAP
http://en.wikipedia.org/wiki/WAP
http://en.wikipedia.org/wiki/Wireless_Markup_Language
http://en.wikipedia.org/wiki/Wireless_Markup_Language

Part 2: Traceability

Page 570

World Wide Web Consortium W3C The World Wide Web Consortium (W3C) is an international
consortium where Member organizations, a full-time staff, and
the public work together to develop Web standards. W3C's
mission is to lead the World Wide Web to its full potential by
developing protocols and guidelines that ensure long-term
growth for the Web. (Source: http://www.w3.org/Consortium/)

XML Attribute An XML structural construct. A name-value pair, separated
by an equals sign, included inside a tagged element that
modifies certain features of the element. All attribute values,
including things like size and width, are in fact text strings
and not numbers. For XML, all values must be enclosed
in quotation marks. Attributes can be declared for an XML
element type using an attribute list declaration. (Source: http://
msdn2.microsoft.com/en-us/library/ms256452.aspx)

XML Element An XML structural construct. An XML element consists of a
start tag, an end tag, and the information between the tags,
which is often referred to as the contents. Each element has
a type, identified by name, sometimes called its "generic
identifier" (GI), and may have a set of attribute specifications.
Each attribute specification has a name and a value. An
instance of an element is declared using <element> tags.
Elements used in an XML file are described by a DTD or
schema, either of which can provide a description of the
structure of the data. (Source: http://msdn2.microsoft.com/en-
us/library/ms256452.aspx)

XML Gallery The XML Gallery [of the DoD Metadata Registry and
Clearinghouse] contains information resources such
as submission packages, elements, attributes, and
schemas that have been registered by DOD software
developers. These information resources use XML, a
platform and vendor independent format for exchanging
data, to handle data, data structures, and data descriptions
(metadata). (Source: http://www.disa.mil/nces/development/
developer_doc_overview.html)

XML Information Resources Document Type Definition (DTD) or XML Schema Documents
(XSD) files.

XML Schema A database-inspired method for specifying constraints on
documents using an XML-based language. Schemas address
deficiencies in DTDs, such as the inability to constrain the
kinds of data that can occur in a particular field. Because
schemas are founded on XML, they are hierarchical. Thus
it is easier to create an unambiguous specification, and it is
possible to determine the scope over which a comment is
meant to apply. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

XML Schema Definition XSD A language proposed by the W3C XML Schema Working
Group for use in defining schemas. Schemas are useful for
enforcing structure and/or constraining the types of data
that can be used validly within other XML documents. XML
Schema Definition refers to the fully specified and currently
recommended standard for use in authoring XML schemas.
Because the XSD specification was only recently finalized,

http://www.w3.org/Consortium/
http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://www.disa.mil/nces/development/developer_doc_overview.html
http://www.disa.mil/nces/development/developer_doc_overview.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Part 2: Traceability

Page 571

support for it was only made available with the release of
MSXML 4.0. It carries out the same basic tasks as DTD,
but with more power and flexibility. Unlike DTD, which
requires its own language and syntax, XSD uses XML syntax
for its language. XSD closely resembles and extends the
capabilities of XDR. Unlike XDR, which was implemented and
made available by Microsoft in MSXML 2.0 and later releases,
the W3C now recommends the use of XSD as a standard for
defining XML schemas. (Source: http://msdn2.microsoft.com/
en-us/library/ms256452.aspx)

http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://msdn2.microsoft.com/en-us/library/ms256452.aspx

Part 2: Traceability

Page 572

References

R1008 Web Services Security Specification, March 2004, (http://www.oasis-open.org/specs/
index.php)

R1051 DoD Meta Data Registry for XSLT samples. [http://diides.ncr.disa.mil/mdregHomePage/
mdregHome.portal]

R1070 C2IEDM data model specifications: http://www.mip-site.org/

R1131 XML Schema Part 2: Datatypes Second Edition - http://www.w3.org/TR/xmlschema-2/#built-
in-datatypes

R1149 "Common Presentation Layer Guide Standard 03-01," NAVSEA, September 2006

R1155 "Electronic and Information Technology Accessibility Standards," Federal Register, [http://
www.access-board.gov/sec508/508standards.pdf]

R1164 DoD Directive 5000.1, The Defense Acquisition System, 12 May 2003 (certified current as
of 24 November 2003); http://www.dtic.mil/whs/directives/corres/pdf/500001p.pdf.

R1165 DoD Instruction 5000.2, Operation of the Defense Acquisition System, 12 May 2003; http://
www.dtic.mil/whs/directives/corres/pdf/500002p.pdf.

R1166 DoD Directive 8100.1, Global Information Grid (GIG) Overarching Policy, 19 September
2002 (certified current as of 21 November 2003); http://www.dtic.mil/whs/directives/corres/
pdf/810001p.pdf.

R1168 DoD Instruction 4630.8, Procedures for Interoperability and Supportability of Information
Technology (IT) and National Security Systems (NSS), 30 June 2004; http://www.dtic.mil/
whs/directives/corres/pdf/463008p.pdf.

R1171 DoD Architecture Framework (DoDAF), Version 1.5, 23 April 2007; https://dars1.army.mil/
IER/index.jsp

R1172 DoD Net-Centric Data Strategy, DoD Chief Information Officer, 9 May 2003, http://
www.defenselink.mil/cio-nii/docs/Net-Centric-Data-Strategy-2003-05-092.pdf.

R1173 CJCSI 3170.01F, Joint Capabilities Integration and Development System, 01 May 2007;
http://www.dtic.mil/cjcs_directives/cdata/unlimit/3170_01new.pdf.

R1174 CJCSM 3170.01C, Operation of the Joint Capabilities Integration and Development System,
01 May 2007; http://www.dtic.mil/cjcs_directives/cdata/unlimit/m317001.pdf.

R1176 Net-Centric Operations and Warfare Reference Model (NCOW RM), v1.1, 17 November
2005.

R1177 Net-Centric Checklist, V2.1.3, Office of the Assistant Secretary of Defense for Networks
and Information Integration/Department of Defense Chief Information Officer, 12 May 2004;
http://www.defenselink.mil/cio-nii/docs/NetCentric_Checklist_v2-1-3_.pdf.

R1178 A Modular Open Systems Approach (MOSA) to Acquisition, Version 2.0, September 2004;
http://www.acq.osd.mil/osjtf/mosapart.html.

http://www.oasis-open.org/specs/index.php
http://www.oasis-open.org/specs/index.php
http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal
http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal
http://www.mip-site.org/
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
http://www.access-board.gov/sec508/508standards.pdf
http://www.access-board.gov/sec508/508standards.pdf
http://www.dtic.mil/whs/directives/corres/pdf/500001p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/500002p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/500002p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/810001p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/810001p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/463008p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/463008p.pdf
https://dars1.army.mil/IER/index.jsp
https://dars1.army.mil/IER/index.jsp
http://www.defenselink.mil/cio-nii/docs/Net-Centric-Data-Strategy-2003-05-092.pdf
http://www.defenselink.mil/cio-nii/docs/Net-Centric-Data-Strategy-2003-05-092.pdf
http://www.dtic.mil/cjcs_directives/cdata/unlimit/3170_01new.pdf
http://www.dtic.mil/cjcs_directives/cdata/unlimit/m317001.pdf
http://www.defenselink.mil/cio-nii/docs/NetCentric_Checklist_v2-1-3_.pdf
http://www.acq.osd.mil/osjtf/mosapart.html

Part 2: Traceability

Page 573

R1179 DoD IT Standards Registry (DISR); http://disronline.disa.mil.

R1182 Office of the Under Secretary of Defense (USD) for Acquisition, Technology and Logistics
(AT&L) memorandum, Instructions for Modular Open Systems Approach (MOSA)
Implementation, 7 July 2004, available at www.acq.osd.mil/osjtf

R1184 Program Executive Office, Integrated Warfare Systems (PEO-IWS 7), Naval Open
Architecture Contract Guidebook, Version 1.1, 25 October 2007 available via the Defense
Acquisition University Acquisition Community Connection Web site (https://acc.dau.mil/oa)
by following the "Policy & Guidance" link.

R1185 GAO Report to Congressional Committees, Weapons Acquisition, DOD Should Strengthen
Polices for Assessing Technical Data Needs to Support Weapon Systems

http://disronline.disa.mil
www.acq.osd.mil/osjtf
https://acc.dau.mil/oa
https://acc.dau.mil/CommunityBrowser.aspx?id=18016
https://acc.dau.mil/CommunityBrowser.aspx?id=18016
http://www.deskbook.osd.mil/dag/Guidebook/IG_c7.3.4.1.asp
http://www.deskbook.osd.mil/dag/Guidebook/IG_c7.3.4.2.asp
http://www.deskbook.osd.mil/dag/Guidebook/IG_c7.3.4.3.asp
http://www.deskbook.osd.mil/dag/Guidebook/IG_c7.3.4.5.asp
http://akss.dau.mil/dag/DoD5002/Enclosures_4.T1.asp
http://www.dtic.mil/whs/directives/corres/pdf/d85001_102402/d85001p.pdf
http://straylight.law.cornell.edu/uscode/html/uscode10/usc_sec_10_00002224----000-.html
http://www.dtic.mil/whs/directives/corres/pdf/i85002_020603/i85002p.pdf

Part 2: Traceability

Page 574

R1199 DoD Instruction 8580.1, Information Assurance (IA) in the Defense Acquisition System
This instruction implements policy, assigns responsibilities, and prescribes
procedures necessary to integrate Information Assurance (IA) into the Defense
Acquisition System; describes required and recommended levels of IA activities
relative to the acquisition of systems and services; describes the essential elements
of an Acquisition IA Strategy, its applicability, and prescribes an Acquisition IA
Strategy submission and review process.

R1202 OMG Data Distribution Service for Real-time Systems Version 1.2

R1204 24 June 2005, Air Force Internet Protocol Version 6 (IPv6) Policy and Transition Plan
Tasking

R1205 June 2006, DoD IPv6 Transition Plan, Version 2.0

R1206 DoD Instruction 8520.2; 1 April 2004; Public Key Infrastructure (PKI) and Public Key (PK)
Enabling; http://www.dtic.mil/whs/directives/corres/pdf/852002p.pdf

R1207 David Sprott "Service Oriented Architecture: An Introduction for Managers"; July 2004,
http://www.ibm.com/services/us/bcs/pdf/soa-cbdi-report-2004-july.pdf

R1211 AFEI NCOIF report "Industry Best Practices in Achieving Service Oriented
Architecture (SOA)"; April 22, 2005; http://www.afei.org/news/documents/
IndustryBestPracticesforAchievingSOA_000.pdf

R1215 Yefim V. Natis, Gartner; "Service-Oriented Architecture Scenario"; 16 April 2003; http://
www.gartner.com/DisplayDocument?doc_cd=114358

R1217 DoD 8320.02-G, April 12, 2006, Guidance for Implementing Net-Centric Data Sharing;
http://www.dtic.mil/whs/directives/corres/pdf/832002g.pdf

R1218 AF ESC Net-Centric Data Strategy Implementation Roadmap, Chief Architect's Office,
5/23/2003, Draft v 0.83

R1219 Dr. Mark Kramer, "Towards Implementation of the DoD Net-Centric Data Strategy (NCDS)";
May 2007 (presentation)

R1224 DoD Chief Information Officer Memorandum, DoD Net-Centric Data Management
Strategy - Metadata Registration, 3 April 2003 (available at http://www.defenselink.mil/cio-
nii/docs/DMmemo20030403.pdf)

R1225 DoD Discovery Metadata Specification (DDMS); refer to the DDMS homepage for current
version information: http://metadata.dod.mil/mdr/irs/DDMS/

R1226 XML Schema Best Practices - http://www.xfront.org

R1227 DoD Metadata Registry and Clearinghouse, http://xml.dod.mil

R1228 ISO/IEC Standard 11179, Information Technology # Metadata Registries (MDR),
Parts 1-6, available from the International Organization for Standardization (ISO), http://
www.iso.org

R1229 XML Schema Specification, World Wide Web Consortium (W3C), http://www.w3c.org/XML

R1232 DoD Directive 5230.9, Clearance of DoD Information for Public Release, 09 April 1996

R1235 CJCSM 3170.01B, Operation of the Joint Capabilities Integration and Development System,
11 May 2005

http://www.dtic.mil/whs/directives/corres/pdf/i85801_070904/i85801p.pdf
http://www.omg.org/docs/formal/07-01-01.pdf
http://www.dtic.mil/whs/directives/corres/pdf/852002p.pdf
http://www.ibm.com/services/us/bcs/pdf/soa-cbdi-report-2004-july.pdf
http://www.afei.org/news/documents/IndustryBestPracticesforAchievingSOA_000.pdf
http://www.afei.org/news/documents/IndustryBestPracticesforAchievingSOA_000.pdf
http://www.gartner.com/DisplayDocument?doc_cd=114358
http://www.gartner.com/DisplayDocument?doc_cd=114358
http://www.dtic.mil/whs/directives/corres/pdf/832002g.pdf
http://www.defenselink.mil/cio-nii/docs/DMmemo20030403.pdf
http://www.defenselink.mil/cio-nii/docs/DMmemo20030403.pdf
http://metadata.dod.mil/mdr/irs/DDMS/
http://www.iso.org
http://www.iso.org
http://www.w3c.org/XML
http://www.dtic.mil/whs/directives/corres/pdf/523009p.pdf

Part 2: Traceability

Page 575

R1237 Web Services Interoperability (WS-I) Basic Security Profile, http://www.ws-i-org

R1239 NCIDs Global Information Grid Net-Centric Iimplementation Document - Service Definition
Framework (S300), 21 December 2005

R1240 ASD(NII)/DoDCIO Memo, Subject: Radio Frequency (RF) Equipment Acquisition Policy
(JTRS), 17 June 2003

R1241 http://jtrs.army.mil (SCA)

R1243 Web Services Security (WSS) SOAP Message Security 1.0 (WS-Security 2004) OASIS
Standard 200401, March 2004 (http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0)

R1244 DISA Information Assurance Support Environment Web site, http://iase.disa.mil

R1245 DoD Directive 8320.2, Data Sharing in a Net-Centric Department of Defense, December
2, 2004

R1246 SAML Token Profile, Working Draft 15, 19 July 2004 (Web Services Security); http://
docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-saml-token-profile-1.0

R1247 Director of Central Intelligence Directive 6/3, Protecting Sensitive Compartmented
Information within Information Systems, 5 June 1999

R1249 Air Force Instruction 33-202, "Network and Computing Security", 26 September 2003

R1251 DoD CIO Guidance and Policy Memorandum 6-8510, "DoD GIG Information Assurance", 16
June 2000.

R1252 DoD End-to_End Information Assurance of GIG, Version 1.0, 30 June 2004

R1254 The Department of Defense (DoD) Internet Protocol Version 6 (IPv6) Transition Plan, March
2005

R1255 Green, David and Grillo, Bob, SRI International, "The State of IPv6 - A DoD Prospective,
February 2005 (prepared for the DoD IPv6 Standards Working Group

R1256 International Organization for Standardization (ISO) Open Systems Interconnection Basic
Reference Model (OSI Model)

R1257 Blake, S., Black D., Carlson, M., Davies, E., Wang, Z. and W. Weiss, An Architecture for
Differentiated Services, RFC 2475, IETF, December 1998.

R1262 The TeleManagement Forum's Enhanced Telecom Operations MapTM (eTOM) and the
Information Technology Infrastructure Library (ITILR)

R1283 Net-Centric Environment Joint Functional Concept, Version 1.0, April 7, 2005

R1284 Net-Centric Operational Environment Joint Integrating Concept, Version .08, August 26,
2005

R1288 Deputy Under Secretary of Defense for Advanced Systems and Concepts, Open
Technology Development Roadmap Plan, April 2006; http://www.acq.osd.mil/jctd/articles/
OTDRoadmapFinal.pdf

http://iase.disa.mil
http://docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-saml-token-profile-1.0
http://docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-saml-token-profile-1.0
http://www.dtic.mil/futurejointwarfare/concepts/netcentric_jfc.pdf
http://www.acq.osd.mil/jctd/articles/OTDRoadmapFinal.pdf
http://www.acq.osd.mil/jctd/articles/OTDRoadmapFinal.pdf

Part 2: Traceability

Page 576

R1291 DoD Instruction 8510.01, DoD Information Assurance Certification and Accreditation
Process (DIACAP), 28 November 2007; available at http://www.dtic.mil/whs/directives/
corres/pdf/851001p.pdf (superseded DoD Instruction 5200.40, DITSCAP)

R1307 IBM, Open Architecture Principles and Guidelines, v1.5.4, 19 September 2007; available
at http://www.acq.osd.mil/jctd/articles/OTDRoadmapFinal.pdf

http://www.dtic.mil/whs/directives/corres/pdf/851001p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/851001p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/851001p.pdf
http://www.acq.osd.mil/jctd/articles/OTDRoadmapFinal.pdf

